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Summary

We investigate the asymptotic convergence proper—
ties of a variety of methods for the numerical solution
of the system of singular integral equations arising
from the traction problem of plane elasticity. Various
sorts of Galerkin methods and collocation methods are
considered, all of which determine a spline approxima=-
tion via pairing with certain test functions; the test
functions may be splines of the same degree as the
trial- functions (ordinary Galerkin methods), splines of
different degree (Petrov-Galerkin methods), deita func~
tions (collocation), or trigonometric polynomials
(spline~trig methods). The choice of test functions is
ghown to have a significant influence on the conver-
gence properties.

Introduction

We consider here a variety of numerical methods
which can be used to solve operator equations, in par-
ticular singular integral equations. The methods are
(ordinary) spline Galerkin methods, spline Petrov-
Galerkin methods, spline collocation methods, and the
spline-trig methods. All these methods are variational
methods ]2] employing splines as trial functions. They
differ only in the choice of test functions. The major
point of this note is to clarify the effect of the
choice of test functions on the asymptotic convergence
properties of the methods. The basic conclusion can be
summarized as follows. The methods employing smoother
test functions have better convergence properties than
those with rougher test functions. However the improve-
ment cannot be measured in LZ or in the Sobolev spaces
H® for |s| small. Rather the advantage can be mea-
sured in the very weak norms H® with 8 << 0.

This conclusion could be justified for quite gen~
eral operator equations. However the results have a
particular significance for the equations arising from
boundary integral methods for elliptic boundary value
problems, because as explained below, error estimates
in such weak Sobolev norms imply error estimates for
the solution to the boundary value problem away from
the boundary in any norm. Hence in the next section I
recall the classical boundary integral formulation of
the exterior traction problem in plane elasticity, and
shall employ the resulting system of singular integral
equations as a model problem throughout the paper.

Most of the results discussed here derive from
work of author, much in collaboration with others. In
particular several of the results stated here were es-
tablished in collaboration with W. Wendland [3,4,5],
and others were motivated by that collaboration. Spe-
cific reference will be given as the results are stated

Finally let me emphasize that the scope of this
note is quite limited and presents only one aspect of a
practical comparison of the various methods considered.
Indeed, 1 compare only the convergence properties of
the various methods, but not their ease of implementa-
tion. Moreover I do not consider at all the important
question of numerical quadrature. The comparisons are
based only on asymptotic convergence properties that
can be rigorously proved or disproved rather than on
numerical experiments. Finally I consider singular
integral equations posed over a smooth simple closed
curve. Although this setting can be generalized in
various directions, most of the methods of analysis do

not generalize easily to equations posed instead on
surfaces, nor do I address the significant difficulties
which arise if the curve has corners or endpoints.

1. The Model Problem

Let T be a smooth simple closed curve in the
plane and Q its exterior domain. Consider the trac-
tion problem for a homogeneous isotropic elastic body
in equilibrium:

Im = 0 on Q,
- )
tu = onT.
Here Lu = div[2pe (u)+r(div u)s]
~~ ~ 5o~ ~'a

=wldu+ (A+u)grad div u.

tu = 2ue(u)n + A(div u)n.
~ ol et g

We use the notation ¢(u) for the strain tensor, n
for the exterior normal, § for the identity tensor,

u and A for the (positive) Lamé constants. As is
well known the problem (1) can be reduced to a system
of singular integral equations. First, it suffices to
find the displacement on T, since by Somigliana's
identity

u(z) = I [T(y,z2)uly) -
~ '~ R A
E(Z,f)y(g)ldul. z €9, 2)
where E 1s the fundamental solution and the rows of

3 the associated tractions (with respect to y). We
remark that T and E are smooth functions of y for

~ - ~

each z € Q. Letting 2z tend to T in (2) and using
a jump relation we get a vector singular integral equa-

tion for the unknown boundary displacement,

u(z) - ZJ T(y,z) u(y)do_ =
R N R A

F(z), z €T, (3)
with F(z) = —ZJ E(y,z)¢(y)do,. The kernel T has the
- PR ASA Ar Adad 4 b
form T ~
3

1
- (2 =g Mg legly-z + K (.2

¥
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where M= [1 o]

and Kl is bounded. It is well-known that (3) admits

a uni;ﬁe solution. For details on this formulation
see [6,7,8].
For comoutational purposes it is useful to




parametrize T by a smooth l-periodic function
x : R >+ R2, We assume that x|[o 1) is ome-to-one
-~ ~ ’

and onto T and that x' never vanishes. Then, in

terms of ;‘;(5) - E(.’f(s))’ we may rewrite (3) as

1
N9+%MJ-%1uhu)-ﬂghu)u 0
¢ IR 2(0) - x(a)]y

1
+ J K, (x(t),x(s))¢(¢) |x* (t) |dt = F(x(s)), s € R.
el - -

Now aic log|x(t) - x(s)| differs from = cot w(t-s)
by a swooth function so (4) can be written

1
Ap(s): = ¢(s) +:lj cot n(t-s) ¢( t )dt
0

1
+ J K(t,8) ¢( t )dt = £(s), s € R, )
ol ~ ~

where K 18 a bounded kernel and £(s) = F(x(s)). We

conside; here the numerical solution of equations of
the form of (5). We shall bear in mind, however, that
once we have approximated ¢ we evaluate the displace-

ment or stress in § by integrating ¢ against a
smooth kernel on T. This remark has consequences for
the choice of numerical method.

2. Mapping Properties in the Sobolev Spaces

Let ¢y and x be l-periodic real-valued distri-
butions on R. For s € R let

woe, = ) H00 X0 K%, ®
k€ez
el = /<095, &)
2nikx

where J y(k)e is the Fourier series of ¢ and
k

k = max(2r|k|,1). The norm (6) is the norm in H®,

the Sobolev space of order s, which consists of the
distributions for which the norm is finite. The inner
product (7) extends to a pairing on HF x H25-t for
all t € R. We use an undertilde to denote the vector-
valued analogues. E.g., HS = H® x H® consists of R%

valued distributions ¥ for which [y2: = [lv;lI2 +
2

opll2 < =.
Let

(1
Agh(s) = y(s) + HJ cot w(t-s) y(t)dt
)4 ¥ =g b4

-

denote the principle part of A. Then

(Agh)" () -[_}a if‘] ¥, a=ghe <3
Hence

<Agp,y>, 2 (1-a) lIvil2. ®)

From this coercivity estimate, the compactness of
A-A; on S, (which follows from the decomposition of
f as a weakly singular convolution kernel and a smooth
kernel), and the imvertibility of A on HO = L2, it
follows that A maps Es isomorphically onto itself.

Now suppose that we find an approximation E of

¢ which is accurate in the Sobolev norm of order

[T

8 <0, If G 1is a smooth periodic function then

1 1 —
e [ @ = e, 1em,.

In particular error estimates for ¢ even in a very

weak norm (8<<0) provide pointwise error estimates
for the stresses and displacements in f of the same
order, and hence are of direct practical interest. We
shall see that approximation in negative norms is
closely tied to the choice of fest funetions in the
numerical methods.

3. Spline Petrov-Galerkin Methods

Let A = {"m}mez be a periodic mesh on R
(’m-m - xm+1 for all m), d € R. We denote by Sd(A)
the N dimensional space consisting of periodic piece-
wise polynomials of degree d which admit d-1 con~-
tinuous derivatives, and set Sd(A) = Sd(A) * Sd(A).
The choice of one of these spaces as trial space and
one as test space ylelds a spline Petrov-Galerkin
method:

Find °A € Sd(A) such that

1 1
[apy=[en seso. ®
0

If d = e this is an ordinary Galerkin method (or
Bubnov~Galerkin method). We require now that 4@ and
e have the same parity (however see § 6). Even for
the trivial case A = identity this condition is nece-
ssary for nonsingularity of the associated matrix.

The key to the analysis of this method is the
following lemma.

Lemma 1: Given d, e € N of the same parity, set
j = (d-e)/2. Then for any £ € U{HS| s>-e-1/2},

wa =0 for all ¢ € Se(A)

if and only if

<f'X>j = 0

Proof. Define Dy = ¢' + §(0). Note that D maps
H 1sometrically onto HE® for all s € R and maps
Ss+1(A) onto SS(A) for 8 € N. In particular

238, (p) = S, (4). Stnce

for all y € Sd(A).

wa = I8 $00
= 2¢0) 370y + (-1)3 E 2y 2rik) ™23 k) 2me}?d
KkF0

= 1-¢-1¥1 2O O + 1)} <f,n'23w>j.
the lemma follows.

Corollary 2: The solution °A € Sd(A) of (9) is
characterized by the equations™ ~

My )y Mg X €S0,

where j = (d-e)/2.

This characterization of the method allows us to
apply the well-developed theory of Galerkin methods.
From the invertibility of A and the fact that it is
a compact perturbation of an operator which is
coercives in the sense of (8), error estimates follow

-

S T NEE P




e

ra
easily. Here we only state the results, For detailed Since the additional term JA - J 1is small, the
proofs and references in a similar case, see [3]. proof of Theorem 3 in the case e = -1 can be carried
: - - fei 11 out. See [3] for details.
Theoren 3: For hA max(xm xm—l) sufficiently sma An important conclusion is that the collocation
there exists a unique solution to (9). Moreover if method converges with order d + 1 at best while an
f € Ht for some t € [(d-e)/2,d+l] and ordinary Galerkin method employing splines of the same
" e Teae - degree achleves twice the order, and a Petrov-Galerkin
s € [-e-1,(d-e)/2], then with smoother test function achieves even higher order.
llo-o Il = Cht-s"fﬂ . Qo) Of course the collocation method is less expensive to
<~ XA's T T4 TNTE implement. A comparison taking into account the rates
of convergence and the computational complexity is
The estimate (10) also holds for s € [(d-e)/2,8+1/2), made in [4].
g8 < t, with the constant C depending however on the
mesh ratio h,/min(x - 1) 5. Very Smooth Test Functions: The SplineTrig Method.
To better appreciate this result let us suppose
that f 1s smooth and that the meshes under considera- Thehprevious results suggest the useiof splines
tion form a quasiuniform family. Then we have the of very high degree as test functions. Since there
optimal order estimate does not appear to be any natural upper limit on the
degree, it is reasonable to consider the use of a lim-
d+1~ " LN
o=l < cn S“f" aun iting space %33 Se(A) Let us define this space to
~ d's ~"d¥l be
for -e-1 < s < d+1/2. The upper limit s < d +1/2 {\p€L2|35 €S (A), e€N odd, suchthats 2 1n 12 as e +m).
comes from the trial functions and is perfectlynatural. e e e
The spline space Sg(A) ¢ S only for such s. The In case A& is a uniform mesh of size 1/N, N odd, we
lower limit, —e-1, 15 determined by the test functions. can identify this space. It is precisely the space,
We remark that this limit is real, not an artifact of Tﬁ, of trigonometric polynomials, spanmed by 1,
the method of proof. Indeedi it can be shown that the 2 in & This £
rate of convergence 0(hd*e+2) obtained in Be-l s sin 21x, cos 2mx, sin 4vx,..., cos(§-1)mx. s fol-
~ lows from the characterization of the spline spaces in
the best possible in any Sobolev space. In particular terms of Fourier series; see (14) below and [1].
we see that to achieve higher order estimates in a Thus we are lead to consider the spline-trig
fixed Sobolev space we should increase the degree of method: Find ¢A € S.(A) such that
the trial functions. However to obtain optimal order ~ ~d
estimates in weaker Sobolev spaces we should increase
1 the degree of the test functions. JAQA'Y - jf'f for all b€ Iﬁ‘
This method was first formulated by the author in [1}
. F i : ion Method ’
: 4. Very Rough Test Functions The Collocation Metho where an integral equation of the first kind with log-
h " €S (A arithmic kernel on a plane curve was considered in
3 The collocation method determines 9, ~d( )s connection with the Dirichlet problem for Laplace's
d odd, by the equations equation. It was shown that the spline-trig method
provides optimal order estimates in all the spaces HS,
AQA(xm) = f(xm) for all m. (12) s < 0. As a consequence the resulting approximation
to the solution of Laplace's equation was shown to
Defining S_,(4) to be the span of the periodic Dirac converge very rapidly away from the boundary, faster
o 1 t (12 than any power of h for a C  boundary and like
distributions me, we may formally {nterpret (12) as e-¢/h  €or an analytic boundary. It is remarkable
a Petrov-Galerkin method of the form (9) with e = -1. that we can achieve infinite order accuracy pointwise
Theorem 3 holds also in this case. The proof outlined even for a method based on piecewise linear (or con—
in Section 3 needs only to be modified slightly to stant) trial functions. The analysis can be adapted
encompass this case. The modification results fromthe to a wide class of operator equations, among them the
fact that Dd+13d(A) almost, but not quite, coincides singular integral equation considered here. We sketch
here some of the main ideas.
. 1; N-1
with s-‘l(A) The intersection is In fact The operator A splits as B+ C where B is
dimensional: an isomorphism HE + HS which is of convolution type,
N N i.e. - -
p*ls ) A S_ @) = (] a8, : ] azok ’
wel B W pel B () = m) §,
while the constant functions are in Dd+13d(A) but not with m(k) a nonsingular matrix, and C maps HS com-
S_;(8). This difference results in the following vari-  pactly into itself. Here B is the sum of A, plus
ant of Lemma 1, in which we use the notation JAS - the integral operator arising from the convolutional
N part of K, and C is the integral operator arising
- 1d 1 C B
1/2m§1(xm+1 xm-l) E(xm) for the trapezoldal approxims= from the smooth kernel remaining. Relatively standard
tion of Jf: = f(O) - J £ arguments allow one to handle the compact perturbation
~° ~ : once the spline-trig method for B is analyzed. Hence
0 we concentrate on that.
Lemma 4 [3]: Let d € N beodd, J = (d+1)/2. Then Since we may use the complex exponentials as a
for any f € U{HB:s>1/2}, basis for Ty, the spline-trig method for the operator
f(xm) =0 for all m B may be written
- 1-N N-
if and only 1f (B(s,-¢)1" (k) = O, 7 =k =5
<f+(JA-J)£,x>j =0 for all x € S;(8). or
4 ’ .
4 . ' ¢
.




5. 103 1N N1
n () [§,0-§00) = 0, A

Since m(k) is nonsignular, we have
£ 4

Hence the error in Hs is given by
¢ L 130030015 /2 a»
k]>N/2
=( I l¢A(k)]2 128 1/2 +( 3 |°(k)l2E?s)1/2.
Jk|>N/2 fx]>n72 ©

The second term on the right is just the error in the
truncated Fourier series approximation to ¢ and is

certainly of optimal order. To bound the first term
we use the Fourier series characterization of splines:

8, = tper’ [k p 0 e ka2t aw

Thus the Fourier coefficients of a spline decay expo-
nentially. Making use of this characterization we can
show that the first term on the right of (13) also is
optimally small, i.e., O(h d+1-8) " For details see
[1].

6. Test and Trial Functions of Different Parity.

The analysis of the spline-trig method was based
on the Fourier series characterization (14) of splines
of odd degree on the uniform mesh A = {j/N}jéz’ This

characterization remains valid when the degree is even
as long the mesh is translated by h/2. That is, if
we set

/N g
{(3+1/2)/8}

d odd,

jez* d even,
(14) holds, and the analysis of the spline~-trig method
applies to this case. For example we may use plece-
wise constant trial functions and trigonometric test
functions.

Collocation with piecewise constant or other even
degree trial functions is another important numerical
method. Here too the meshes for test and trial func-
tions are generally translated one half mesh interval.
Otherwise put, the collocation points are the midpoints
of the mesh intervals of the trial space.

The analysis of Section 4 does not appear to ex-
tend to this case. Instead the only general analysisI
know is via Fourier series [9]. A drawback of this
approach is that it applies only to operators with con-
volutional principle part (including, however, the
model singular integral equation discussed here) and
allows only uniform meshes. However both these re-
strictions have recently been weakened through addi-
tional arguments [5].

One could also analyze via Fourier series a
Petrov-Galerkin method employing splines of differing
parity with meshes translated by a half interval.

Such methods do not appear particularly useful however.

Finally let us mention that G. Schmidt [10] has
given an analysis of even degree spline collocation
based on and similar in spirit to the analysis in [3]
described in Section 4. His analysis applies to collo-
cation by splines of even degree on an arbitrary mesh
with collocation points at the nodes. As mentioned in
Section 3, this method does not work in the trivial
case of A = identity, nor does it apply to the strong-
ly elliptic singular integral equation considered here.
Schmidt showed, however, that nodal collocation by even
degree splines converges with optimal order im appro-

priate Sobolev spaces for operator equations of the
form AS¢ = £ where

S¢(s) = JCOt n(s-t) ¢(t)dt.

In particular this method applies to the first kind
singular integral equation

(54K)¢ = £.

with K compact.
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