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Chapter 22

Selection of Finite Element Methods

D. N. Amold, I. Babuska, and J. Osborn

22.1 INTRODUCTION

The goal of engineering computations is to obtain quantitative information
about engineering problems. This goal is usually achieved by the approxi-
mate solution of a mathematically formulated problem. Although a relevant
mathematical formulation of the problem and its approximate solution are
closely related (see, for example, [1,2]), here we shall suppose that a
mathematical formulation has already been determined and is amenable to
an approximate treatment. We shall discuss a broad class of approaches
based on variational methods of discretization which allow one to find the
approximate solution within a desired range of accuracy.

Let H denote the linear space of possible solutions and u € H the exact
solution of the problem. A (linear, consistent) variational method of discreti-
zation consists of a finite dimensional linear subspace S < H called the trial
space in which the approximate solution is sought, a test space V (of the
same dimension as the trial space §), and a bilinear form B(u, v) defined on
H X V. The approximate solution, denoted by Pu, is then determined by the

conditions PucS (22.1a)

B(Pu, v) = B{u, v) forallveV (22.1b)
In order that Pu be computable, the following two conditions should be
satisfied:

For any ve V, B(u, v) is computable from the data of the
problem (without knowing u). (22.2a)

For any se S there is some v € V such that B(s, v) #0. (22.2b)
1t follows that (22.1) leads to a system of linear equations which is uniquely
solvable. It is obvious that Pu=u for any u e S. The approximate solution
Pu obviously depends on the selection of S, V, and B.

The acceptability of the approximate solution is stated in terms of a norm
il - || of the difference of u and Pu, i.e. we accept Pu if

1P~ ull <7 flul (22.3)
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434 Hybrid and Mixed Finite Element Methods

where 7 is an a priori given tolerance. (An absolute error criterion or other
variant is equally possible.) Thus, given || - || and =, the goal is to select S, V,
and B so that (22.3) is achieved in_the most effective way. (We do not give
here an exact meaning to the word ‘effective’.)

For each mathematical problem there exists a wide variety of possible
variational methods of discretization. In this paper we shall discuss properties
of these methods which enable us to distinguish among them and which aid
in the selection or design of a method which is effective in achieving the
given goals of the computation. In Section 22.2 some general considerations
are discussed. The remainder of the paper is devoted to specific illustrative
results. We conclude this introduction with a very simple example in terms
of which some of the main ideas will be explained.

Let us consider a longitudinally loaded bar on an elastic support. For
0<x < denote by u(x) and a(x) the longitudinal displacement and normal
stress respectively. A classical formulation consists of the boundary value
problem

E(x)u'(x)=0o(x) (22.4a)
—(F(x)a(x)) + c(x)u(x) = p(x) (22.4b)
u(0)=0, u()=0 (22.4¢c)

Here E(x) denotes the modulus of elasticity, F(x) the cross-section, ¢(x) the
spring constant of the elastic support, and p(x) the longitudinal load. We can
cast this problem in a variational form in various ways. For example, define
the bilinear form
4
Bi(u,0; v, p)=J. (Eu'p —op + Fov'+ cuv) dx (22.5)
0
Then
i
B(u,o;v,p)= I pv dx (22.6)
0

for any ve H' and p e H°, where

H'= {v f [v2+ (v")*]dx <o, v(0) = v(l) =0}

!
J. p*dx <oo}
o

and so B,(u, o;v,p) is computable without explicitly knowing the exact
solution (u, o). Note that B,(u, o-; v, p) is defined for all (w,o)e H'XxH=H
and all (v, p)e H. *

and

H0={p
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There are many other bilinear forms which could be used in a variational
formulation of (22.4). For example, let

3
B,(u,o; v, p) =J (u’p —%e+ Fov' +cuv) dx 22.7)
(1]
Then

1
By(u,0;v,p)= L pv dx

for (u, o), (v, p) € H (with H defined as above). Integrating by parts in (22.7)
we get

1
By(u,0;v,p)= L [— up’ _%p_ (FoYv+ cuv] dx (22.8)
SO
i
B3(u7 g, 0, P) = L pv dx
Here we assume u, v € H? and

o,peH1={v

Ll [v2+ () ]dx < oo}

In both cases the bilinear form is obviously computable from data. For a
final example set

3
B.(u, v) =I (EFu'v’'+ cuv) dx (22.9)
0
By eliminating o from (22.4) we see that

1
Ba(u, v) = L pv dx

for u, ve H'. This is the usual form used in displacement finite element
methods. Of course many other variational formulations of (22.4) are
possible (in fact an infinite number).

To complete the specification of a discretization method we must select, in
addition to the bilinear form, the trial and test spaces S and V. For example,
in the case of B; we may select any finite dimensional subspaces S and V of
H which are of the same dimension and satisfy (22.2b).

Let us now define some of the norms which we will consider. For k a

L
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L ey d<u
non-negative integer set u'“'=—— and let
g g dxk

e = UO i uli(x) dx]”z

k
_ , )
loaler ZB ess sup |ulx)

We also define analogous norms for k a negative integer. For such k define
v =u™ by u(x)=0v""Yx), choosing the constants of integration so that
fEoP™ldx =0, Osm<(—k-1)2; 2" 0)=0"""(1)=0, Osms=
(—k—2)/2. Then we will write

lleller =llleo.

These negatively indexed norms emphasize the effect of oscillations of u less
than do the positively indexed norms. Analogous norms can be defined
when u depends on two variables.

22.2 GENERAL CONSIDERATIONS

To achieve the acceptance criterion (22.3) it is certainly necessary that

Z(, ) = inf Ju—sl|< ul (22.10)
The quantity Z(u, S) measures the error in best possible approximation of u
by elements of S with respect to the chosen norm || - ||, i.e. the approximabil-
ity of u by S.

The choice of S is clearly essential to the effectiveness of the discretization
method. The solution u is unknown a priori, and often only the information
that ue H is available. In such cases S has to be selected so that every
element in H can be approximated well. More information about u allows
more effective choice of S. Such information can be achieved through a
learning process during the computation and thus S can be selected adap-
tively (see, for example, [3, 4]).

That the trial functions approximate the solution well, i.e. that the
magnitude of Z(u, S) is small, does not alone insure that the approximate
solution Pu is close to the exact solution u. Therefore it is reasonable to ask
that the method be quasi-optimal. This means that

lu — Pul|l<KZ(u,S)=K ing | — sl foralue H (22.11)

where K is a constant which is not too large. The smallest value of K for
which (22.11) holds is called the quasi-optimality constant.
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Condition (22.11) is equivalent to another condition called the stability
condition. This states that

IPull<K*|jull forallueH (22.12)

The smallest value of K* for which (22.12) holds is called the stability
constant. To see that quasi-optimality and stability are equivalent, assume
that (22.12) holds. Now, if s€ S, then

llu — Pull=|{(u — s)~ P(u — s)l| <||u — s]| + | P(u — )]
<lu—sll+ K* flu - sl <(K*+1) Ju—s||
(Here we used the fact that Ps = s, as mentioned earlier.) Thus (22.11) holds
with K<K*+1. On the other hand, assuming (22.11), we have that

1Pull<lPu — ull+llull < KZ(u, $)+{lul|< (K + 1) Jul

and so (22.12) holds with K*< K+ 1. The importance of (22.12) is that it is
often easier to verify than (22.11).

Note that while approximability is affected only by the choice of the trial
space S, stability (or quasi-optimality) depends on the interplay between B,
H, S, and V. Because the test functions are not needed for approximation
purposes, the main goal in the selection of V is to achieve stability with the
smallest possible constant K. Let us remark that for certain bilinear forms
and certain norms, the choice V =S leads to the stability constant 1. In such
cases, the performance of the method depends solely on the selection of S.

Note, further, that both approximability and stability depend heavily on
the norm under consideration. Changing the norm can violate quasi-
optimality although the computational algorithm remains the same. Because
of this, the method must be investigated in close relation to the given
acceptance criterion.

Although approximability and stability are essential and of primary inter-
est for the method, there are other important features to be considered in
the rational selection of discretization procedures.

22.2.1 Robustness

The bilinear form B and the solution u may depend on various parameters,
e.g. in the above example of the bar problem, E, F, and ¢ may play a
significant role. Both approximability and stability will depend on such
parameters. A method is called robust when its performance is relatively
uninfluenced by the variation of the parameters within a large range.

22.2.2 A posteriori estimates and adaptive approaches
A typical acceptance criterion, as mentioned above, is

llu — Pull <7 |lul
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where 7 is a given tolerance. Although we have
llu—Pull<KZ(u, s)

this estimate may have no direct practical importance. In the first place we
will in general not know precise values for the quasi-optimality constant K
or for Z(u, S). Moreover, even when these are known the resulting estimate
may be very pessimistic. The reason is that the quasi-optimality constant K is
based on the worst case (since 22.11 must hold for all u € H), while the true
solution may have special properties unknown to us. The only general ways
to implement the acceptance criterion reliably are based on a posteriori
analysis of the approximate solution Pu. Thus a computable error estimator
e is introduced, which depends solely on input data and Pu and satisfies

€ ~llu—Pu||
in the sense that
Cie<|u—Pull=Cse
and

&
llu— Pul|

This can be achieved (see, for example, [3 to 6]), but not every selection of
H, S, V, B, and || - || allows for estimators with the same effectiveness and
reliability. Feasibility of adaptive selection of test and trial spaces may also
be an important feature to be considered in the selection of the form B.

V] ase —> 0

22.3 ILLUSTRATIVE RESULTS

In this section we discuss some concrete mathematical results illustrating the
ideas introduced above.

22.3.1 Approximability

First we consider some questions related to approximation. In engineering
computations the solution we are interested in approximating usually has
special properties. For example, it may be smooth except for some singular
behaviour in the neighbourhood of a known point such as a crack tip,
corner, or concentrated load. Moreover, the qualitative nature of such
singularities is known.

22.3.1.1 The one-dimensional case

The one-dimensional analogue of ‘corner’ behaviour in two and three
dimensions is given by functions u,{(x) =x?, v a real number. This function
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has the property that
kK pi L\2
Y L x”"“*“(ﬁ%) dx <oo (22.13)
1=0

for any integer k>0 and any real number a >2k —1-2v. Suppose we are
interested in approximating in the H® norm a function satisfying (22.13). It
can be shown that there exists a sequence of subspaces S™ of H° such that
S™ has dimension n and the S satisfy the following approximation
property: if ue H® is any function satisfying (22.13) for a non-negative
integer k and any real number a such that 2k >« =0, or if ue H*, then

Z(u, S™)<C(k, a)n™* (22.14)

Moreover, (22.14) exhibits the best rate of convergence achievable by any
subspaces S™ of dimension n (see [7]). This is a very robust approximation
property. In particular, all the functions w,, with y> —3, can be approxi-
mated with this rate. (For y< —3, u,¢ H° so such a result cannot apply.)

In fact, since the functions u, have additional properties, even better
approximation than indicated by (22.14), namely an exponential rate of
convergence, may be obtained for them by another choice of spaces. Thus
there exists a sequence of subspaces S™ of dimension n such that if y>—31,
then

Z(u,, S™)<Cexp (—Bvn) (22.15)

for some B>0 (see [8] for details).

The two results quoted above relate to the existence of a sequence of
subspaces of H® with good approximation properties. We now consider the
quality of approximation achieved by some concrete choices of the se-
quences S™ suitable for computation. First let P™ be the space of polynomials
of degree less than n. Then any function satisfying (22.13) can be approxi-
mated with the error

Z(u, P™) = inf ||ju—s|<C(a, k)n—mink2k—a) (22.16)
Sep™

Applying (22.6) to the functions u, (y> —3) we get the estimate
Z(u,, P™)< C(y, g) 2 (22.17)

with & >0 arbitrarily small. It can also be shown that the estimate (22.17) is
essentially the best possible one.

Let us now select S™ =S8, the space of all piecewise polynomials of
degree less than p on a quasi-uniform partition [0, 1] into n elements. This
space has dimensions roughly proportional to n. The results analogous to
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(22.16) and (22.17) in this case are
Z(u, Sgn))sc(k’ a, p)n—min(p,k—a/Z) (2218)

-

and
Z(uy, Sgn)) < C('Y, s)n—min[p,(1+2‘y)/2]+5 (22.19)

and these rates are essentially unimprovable. Comparing (22.16) and (22.18)
we see that for functions u only assumed to satisfy (22.13) the rate of
approximation achieved by the polynomials is certainly not worse and may
be better than that achieved by the piecewise polynomials. For the functions
Uy, (22.17) and (22.19) show that the rate achieved by the polynomials is at
least twice that achieved by the piecewise polynomials (for more details, see

[9)-

The estimate (22.18) is in essence the classical estimate
Z(u, S7)< C(k, p)n™" ||uflp

when p>k and a =0 (see, for example, [10]). The question arises whether
under these conditions an expression for C(k, p) can be given which ex-
plicitly characterizes the behaviour with respect to p. In [11] such an expres-
sion is given in both the one- and two-dimensional cases (and for approxi-
mation in H'). It is shown there that on the right-hand side we can have
C(kyn~*¢ with C independent of p.

Neither the piecewise polynomial spaces nor the polynomial spaces
achieve the optimal rate of convergence characterized by (22.14). For
example, for y> —31 sufficiently small, the function u, is not approximated
at the optimal rate of n™* for either of these cases. Such a rate can be
achieved in the first case by a proper refinement of the mesh in a neighbour-
hood of the origin and in the second case by changing the polynomials to
some other system of functions (see [11,12]). The importance of this
observation is that for engineering computations it appears likely that
approximation spaces can be created which yield a rate of convergence
which is better than polynomial and is probably exponential.

Thus far we have considered approximation in the H° norm. Similar
results are available for all the H' norms, | both positive and negative. An
interesting fact is that when ! decreases the rate of convergence furnished by
either p™ or S increases linearly with [ (for more details, for example, see

[13)).

22.3.1.2 The multidimensional case

So far we have discussed only the one-dimensional case. Analogous results
exist in more than one dimension, but these are far from complete. We will
not go into details here, but refer the reader, for example, to [9, 11, 14].
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22.3.1.3 The h, p, and h—p versions of the finite element method

As was stated above, there are important cases when selecting the same trial
and test spaces leads to a stability constant of 1; thus approximability by the
trial space determines the performance of the method. The classical finite
element method uses piecewise polynomials of fixed degree p on meshes
which are refined to achieve accuracy. Because the size of the elements is
usually denoted by h, this method is called the h version and the approxima-
bility properties (22.18) and (22.19) for such spaces over quasi-uniform
meshes are used. The p version achieves accuracy by fixing the mesh and
increasing the degree p of the polynomial. In this case the approximation
results (22.16) and (22.17) are applicable. The p version has been im-
plemented in the program COMET X. We refer the reader to [9] and [15]
and references therein for detailed information. Finally, the h—p version
combines both of these approaches. The exponential convergence rate given
in (22.15) can be realized in the h—p version.

22.3.2 Finite element methods

We turn now to a discussion of finite element methods. As discussed in
Section 22.2, the quality of approximation yielded by such a method is
assured by stability in conjunction with approximability. The stability of a
method depends on the interplay between the spaces S and V, the bilinear
form B, and the norm | - ||. This is illustrated in the first example.

22.3.2.1 An example illustrating the role of the trial and test spaces in
stability

First we consider a one-dimensional problem with the simplest possible
bilinear form. Setting =1, EF=1, and ¢ =0 in (22.9), we get the form

1
B(u,v)= L u'v' dx (22.20)
The solution uecH' satisfies B(u,v)=J}pvdx for all veH', and the

related two-point boundary value problem is

—u"= p
u(@=u(1)=0

For discretization we define spaces of smooth splines. Let A=
{0=x,<x,;< :-<x, =1} be a mesh of [0, 1] and set h; = x;, —x;—;. For y=1,
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the mesh is called vy quasi-uniform if

max ~<vy
IN) .
1

A weaker restriction is that the mesh be vy locally quasi-uniform, i.e. that

max — =<y
' i1

Given any mesh A we define for r=0, 1, 2, . .. the smooth splines of degree r
subordinate to A to be the piecewise polynomials of degree r with r—1
continuous derivatives. The space of all such splines is denoted M"(A). In
particular M°(A) is the space of piecewise constant functions and M Y(4) is
the space of continuous piecewise linear functions. We also denote by M'(A)
the space of piecewise linear functions with zero boundary values and by
M>A) the space of natural cubic splines, that is M3(A)=
{fveM*(A)|v=v"=0 when x=0 or 1}.

We consider the use of such spline spaces for S and V in conjunction with
the bilinear form B defined in (22.20). It is possible to show that if $ and V
are taken to be spaces of smooth splines of degree r, and r, respectively
(with appropriate boundary conditions), and if r, and r, are either both odd
or both even, then condition (22.2b) is satisfied. Hence Pue S is uniquely
defined by (22.1).

The most standard case occurs with S = V = M'(A). The stability properties
of this method in several norms are summarized in the following theorem.

Theorem 22.1 Let S=V =MYA) for an arbitrary partition A. Then

IPu—uln<K ing |t — |z (22.21a)
Pu—ullg <K inf e — sflere (2r.21b)
[Pu—ulle <K in£ [l — sllgz0 (22.21¢)

for all ue H', with K independent of A. However, for any C>0 and any
mesh A there exists u € H' such that

1P~ o> C ing u — sl

For more details see [16].
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The case where S = M'(A), V = M>3(A) is less familiar and more involved.

Theorem 22.2 Let S=M'(A), V=M>3A). Then:
(a) For an arbitrary partition A,

Pu =l < K inf sl
with K independent of A and ue H'.

(b) For any y=1 there exists a constant K(v) such that for all v quasi-
uniform partitions and all ue H?,

VP — s < Ky in s =
and
1P — wlr-+ < K(y) inf fu = -

(c) However, for any C>0 and any partition A, there exists ue H* such
that

1Pu — ullyy--= C sllelg llue — sllgs-2

(d) If 1<y<yo=1+V3+V(3+2V3)=5.2745..., there exists a con-
stant K(vy) such that

1Pu— ully < K () inf Jlu— sl
and
1P — sl < R i = sl

for any vy locally quasi-uniform partition A and u. However,
lim, _, ,oK(y)=co.

Thus we see that there is a very fine interplay between the trial and test
spaces, even for the simplest bilinear form.
So far we have analysed the form (22.20). We now consider the form

1
B(u, v) =I Eu'v' dx (22.22)
Al
where 0 <ey<E(x)<e, <. The question arises whether Theorems 22.1

and 22.2 remain true as stated. It is possible to show that if E(x) is
sufficiently smooth, then Theorems 22.1 and 22.2 hold without change. The
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requirement of smoothness means that K may also depend on the maximum
of the first few derivatives of E as well as on ¢, and e;. It can be shown that
(22.21a) holds with K depending only on e, and e;, but (22.21c) is not true
when no differentiability restrictions are made on E. Thus we may say that
the performance of that method is more robust with respect to the coeffi-
cient E in the norm ||+ || than it is in the norm || - {50

22.3.2. The bilinear form and robustness

We continue to consider the simple problem (22.4) but now consider the
effect of the choice of the bilinear form on the robustness of the method. For
simplicity assume that F=1 and ¢ =0. Let E(x) be given satisfying 0 <e,=<
E(x)=<e; and consider the bilinear forms (22.5) and (22.7). The bilinear
form (22.5) clearly stems from the system of equations

Eu'= (22.23)
g'=p
while (22.7) comes from
u==
E (22.24)
o'=p

Assume now that we take
S =V =MYA)x M%A) (22.25)

in both cases. It is easy to see that o can be eliminated from the system of
linear equations arising from (22.5) with the choice of spaces given in
(22.13), and we then get the same method as when (22.10) is. used with
S =V = M'(A). The properties of this method were summarized in Theorem
22.1. The form (22.7), however, gives different results, which we now
consider in detail.

Letting (i, &) = P(u, o) we get:

Theorem 22.3 Let A be an arbitrary mesh. Define P by the bilinear form
(22.7) with S and V defined by (22.25). Then there exists a constant K
depending only on e, and e, such that

(a) =@l +lor~ o <K _inf [l —xloe +l— blle]
xsb)eS

®) Ju= e+l — e, <K inf =l =l |
X, WS

©) lo— <K inf fo—lao
weM(A)

@ lo—&lue<K inf lo—
YeM°(A)
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The statements analogous to (c) and (d) for the error {lu —iil| are not true.
In order to elaborate this point let us introduce a further notation. For
x € M*(A) let x be defined by

)Z(x,-)=x(x,-) forj=0,1,...,n
(Ex'Y =0 on (x-1, x;) forj=1,2,...,n
Then we have:

Theorem 22.4 Let ii be defined as in Theorem 22.3 (i.e. using the form
(22.7) and spaces of (22.25). Then

it ~ dEllege< K(eo, €4, V(E)) inf | Ol = xellese+ Yot — xllzze]
and
m;':lx Iu(xi)"‘a(xj)lsK(e(b €, V(E)) ilg‘f(A) ”u_);”HS

with K depending on e,, e, and the variation V(E) of the function E.

We remark that this theorem is not valid when the dependence of K on
V(E) is suppressed. Moreover, while the term inf |[u — xll5o in the second
estimate is necessary, it is usually smaller than the first term. Comparing
Theorem 22.4 with the previous results we see that the form (22.7) is much
more robust than (22.5) with respect to all the norms we have considered
except the H' norm, and should be preferred in most situations.

Let us comment on the system of linear equations which the approximate
solution led to when & is eliminated in either of the two methods discussed
in this section. In both cases Pu € M'(A) is defined by a system of the form

1 1
J' E (Pu)v' dx = L pv dx for all v e MY(A)
(1]
When the form (22.5) is used
Eﬁhl L E(x)dx  on(x_1,x)

while when (22.7) is used

E,= [;‘1: j:‘ E:x) dx]—I on (x;_y, X;)

i=1,2,...,n Thus in the former.case E is replaced by its piecewise
average and in the latter by its piecewise harmonic average. The above-
stated results show that the usual finite element method does not have as
good stability properties when E(x) changes significantly over an element,
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and so should not be used. The change can be measured by the ratio of the
average to the harmonic average.

22.3.2.3 Changing the dependent variable to improve approximability

Now we turn to the analysis of the form defined in (22.8) where for
simplicity we take F=1 and ¢ =0. If we choose § = V = M°(A) x M'(A) and
set (i1, )= P(u, o), it is easy to prove that

= @llero +llo — Gl < C oof [ =Xl +lo =] (22.26)
Xy )€

with C independent of A but depending on E. Now for any ge H' consider
the variational formulation

! i
Bs(uy, 0y; 0, p) = I (p—gHvdx— L %g dx (22.27)
0
instead of the method just considered:

1
B3(u, 05 v, p)=[ pv dx
0

The new variables are related to the old by
o,=0—g, U, =u

Thus we may compute o, and then take o = o, + g for the stress component
of the approximate solution. Because the same bilinear form occurs in both
these approaches, the stability is unchanged and we get:

Theorem 22.5 For the method associated with (22.27)
=+l = Gl < int =X+l —lhe ] 22.28)

where the C is the same constant which appears in (22.26) (and therefore is
independent of g). Moreover, 0 —& =0, —G,.

Now we note that the proper choice of g can increase the smoothness of
0,, thereby increasing its approximability and so improving the accuracy of
the method. In this simple one-dimensional case the best choice is g = p dx
80 o, is constant. (In some situations it is as easy or easier for the user to
input g as p.) In this case the last term in (22.28) will disappear and ¢ will
exactly equal ¢. A similar idea may be fruitfully applied to related mixed
methods in more than one dimension.
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22.3.2.4 A robust method for a parameter-dependent problem

In Subsection 22.3.2.2 we discussed a simple case in which changing the
bilinear form significantly increased the robustness of the method. We now
discuss another example in which a parameter enters in a direct fashion. The
problem to be considered models the deflection of a beam allowing for the
effect of shear stress. In the simplest case this model can be described by the
system of equations

~¢it+d g —wp)=0 0<x<1 22,20
d 3¢ —w)) =g 0<x<1 (22.29)
with the boundary conditions
¢4(0) = ¢4(1) =0 (0) = wa(1) =0

Physically ¢,(x) represents the displacement, w;(x) the rotation of the
cross-section, and g(x) the transverse load. The solution depends on the
beam thickness d. We associate to the problem (22.29) the bilinear form

1
Ba(d, w; s v) = L (&0 +d~2( — ')~ v')] dx

Let S = V=M"(A)x M*(A). Then we have

1
Bu(u au )= gvix (22.30)
0
and so the bilinear form is computable. Denoting P(¢g4, ©4) by (by, G4) wWe
get
Theorem 22.6

s — Baller + g — @allerr < C(d) (xigl)fes Olba — xller +llwa — pllr]

The constant C(d) is independent of ¢, w e HY, but C(d)—> as d — 0.
A corollary of this theorem is:

Theorem 22.7 Let any non-zero load g be given and let 0<o<1 be
arbitrary. Then for any partition A there exists a value of d depending on A
such that
liéa — daller = o l|bller:
s — @l = o loglle
Theorem 22.7 shows that for small d the method based on (22.30) is
virtually useless.

—
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We now associate to our problem another bilinear form, in which we
introduce a new variable £, representing the shear stress.

1
Ba(d, @, & b, v, m) = L [0 £0— ')+ (b — ') — d2n] dx
(22.31)

The functions ¢4, wy, and & =d (¢, — w)) satisfy
1
By(¢a, @4, &5 0, v, 1) =I gvdx (22.32)
0

for any ¢ e H, ve H', ne H°. Select now S =V = M(A) x M'(A) X M°(A),
and let (¢y, &y, &) = P(dy, wg, £;). The robustness of the new method with
respect to the parameter d is evidenced by the following result.

Theorem 22.8 For the method associated with (22.32)
I pa — baller +llws — Ballesr +]|&; — Eallero

<C inf [ll¢g— xller+llws — ol +1|1& = Allgro]

(x.p,A)eS

with C independent of A and d.

When g in (22.29) is smooth, then ¢4, wg, and &, are smooth also, and
may well be approximated independently of d. It follows that computations
based on (22.31) and (22.32) give very good results while we have seen that
computations based on (22.30) yield extremely poor results for small d. This
difference in the robustness of the two methods with respect to d is very
striking in practice. It is also worth noting that the additional variable &,
may be eliminated from (22.32). The resulting method is identical with the
method based on (22.30) except that the integrals are calculated by the
composite mid-point rule. By employing this reduced integration implemen-
tation, the mixed method entails no extra expense whatever (for more
details, see [17]).

22.3.2.5 Robust methods in two dimensions

So far we have discussed varjous ideas concerning the proper selection of S,
V, and B in the context of simple one-dimensional examples. Analogous
ideas can be used in more dimensions also, although much less is known at
present. Nevertheless we will briefly consider some examples. Consider the
problem

0 Jdu "0 du

—a—-+t—a—=f
dx 9dx Jy dy
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on
Q={(y|lxl<1,lyl<1}

with the condition u =0 on 3. Assume that a = a, for x <0 and a = a, for
x =0, where ao and a, are distinct positive constants. Having selected a
triangulation I (with minimal angle condition), the usual method employs

the bilinear form
oud
B(u, v)=L (a_‘4_2+a2292> dx dy (22.33)
ax 9x dy dy

and equal trial and test spaces consisting of functions which are continuous,
linear on every triangle, and zero on 8{. If the interface x =0 does not
coincide with the boundaries of the triangles, then the solution, which is not
smooth at the interface, will be approximated less accurately than for a
problem with a smooth coefficient. We shall show how to proceed in a
slightly different fashion which will avoid this problem.

We select for V the space of continuous piecewise linear functions. Thus
the restriction of a test function to a triangle is a linear combination of the
three functions 1, x, and y and each test function is continuous at the nodes.
The trial functions are taken to restrict on each triangle to a linear
combination of the functions 1, f5dt a, and y and to be continuous at the
nodes. The trial functions, unlike the test functions, need not be continuous
on element boundaries except at the nodes (and so are ‘non-conforming’).
Now interpret (22.33) as a sum of integrals over the individual triangles and
replace the norm |||l by the norm |-z, defined as the square root of a
sum of integrals over the triangles. This is a common approach in non-
conforming finite element methods.

Theorem 22.9 For this method

!

Hu - Pu"Hl(g')S Clg “u - X"H‘(g)

with C independent of 7 and u. The value of the unusual trial space S used
here is that while stability still holds (as stated in Theorem 22.9), these trial
functions mimic the behaviour of the solution u and thus greatly improve the
approximability. That is, Z(u, S) is generally much smaller for this choice of S
than if S is taken equal to V (the usual choice).

The resulting method therefore gives superior results. An important observa-
tion to be made here is that the difficulties encountered with non-
conforming methods generally arise from the non-conformity of the test
space. Non-conforming trial functions cause no such problems.

A similar idea can be applied to cerner problems. Consider solving
Laplace’s equation on a domain with a corner angle of 3w, and zero
boundary conditions. The solution then has a singular component of the

N
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type r* sin 276/3. For test functions we use the usual linear elements but
for trial functions we use elements based on the functions 1, r*? sin 276/3,
and r*3cos 276/3, instead of 1, x, and y. Using this approach, the loss of
accuracy due to the singular behaviotr of the solution in a neighbourhood of
the corner is prevented. We remark that this procedure need not entail any
computational difficulties because it can be implemented in a way which
preserves the symmetry of the linear equations, and one may work in the
usual way with the microstiffness matrices and nodal variables.

22.4 CONCLUSIONS

We summarize here the main ideas we have presented. As we have seen,
there is virtually an unlimited variety of possible variational discretization
methods. Such a method is characterized by the bilinear form and the trial
and test space. In selecting a method it is of paramount importance to
consider the goals of the computation, in particular the norm with which the
error is to be assessed. The goals of the computations are best achieved by a
method which has good approximability and stability properties with respect
to the desired norm. The method should be robust in the sense that these
properties apply uniformly over the relevant class of problems. We note that
often the obvious method is not best and various variations can lead to
strikingly improved results.
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