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Summar

A convergence analysis is presented for standard
and mixed finite element discretizations of a model
system of equations for a transversely loaded beam,
The equations depend parametrically on the beam
thickness and the emphasis of the analysis is on the
robustness of the methods with respect to this para-
meter, The mixed methods are shown to be far more
robust than the standard methods employing elements
of the same degree. Moreover they entail no addi-
tional computational expense. Computational results
are included to illustrate the main results.

1. Introduction

Most numerical software is intended to apply to
a class of computational problems. For example,
programs in structural mechanics may permit a wide
variety of geometries, materials, loadings, etc. For
this reason a highly desirable quality of a numerical
method is that it be reliably accurate and efficient
for the entire class of problems to which it may
reasonably be applied. This quality may be referred
to as robustness of the method.

One quite general way to analyze the robustness
of a method is to parametrize the class or a subclass
of relevant problems and investigate the uniformity
(or lack of uniformity) of convergence of the approx-
imation error with respect to variation of the para-
meters. Familiar examples of such parametrizations
are given by the material coefficients in structural
calculations and by the Reynolds number in fluid flow
simulations. In this paper we investigate the robust-
ness of two families of finite element methods for a
beam model with respect to the parameter of beam
thickness. A standard linear finite element method is
found to be mot robust at all and the analagous wmethod
using higher degree elements to have fair robustness
properties. A family of mixed methods are defined
which are completely robust with respect to beam thick-
ness for elements of all degrees. Moreover these mixed
methods can be implemented as a modification of the
standard method with an integration rule of reduced
accuracy, thus realizing the superior robustness with—
out extra computational cost or programming effort.

The results presented parallel publighed numerical
results for plate and shell computations. 13,4,6,7,9,
10 These however have not been fully analyzed mathema-
tically, The analysis for the beam which is outlined
here has been justified in full detail by the author.!

2. Notations

For functions f(x) and g(x) defined for
1

0¢xg1 welet <f,g> denote J f(x)g(x)dx and
0
set J|f]| = /<E,f> . For r = 0,1,2,..., f(r) denotes
T
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and H® is the space of functioms f for which Hfl)r
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is finite. The space letre Hllf(O) = f(1) = 0}
The notation Mfl(A) refers to the space of all

(possibly discontinuous) piecewise polynomials of
degree at most T subordinate to a partition 4 of

the unit interval. The subspace of Mfl consisting
of continuous functions vanishing at 0 and 1 is
denoted [
3. The beam model
The beam model we consider was formulated by
Timoshenko®. We seek two function ¢ (x) and wd(x)

defined for 0 £ x £ 1 satisfying

- a" -2 ') =
i (¢d wd) 0,
a o0y = 8 s

¢d(0) - ¢d(1) = wd(O) b wd(l) =0 .
A variational statement is the problem

find od , W, € ﬁl such that
d
(s))
[ ] -2 ’ . sl d
<¢d,¢ >+d <¢d—ud,w-v >m<g v> for all y , v €H

This model may be derived from the equations of plane
linear elasticity by dimensional reduction as follows.
Let an undisplaced plane body occupying the region

-d
0sxsl,5sys %} be subject to a smooth
nonzero vertical body force - dzg(x) . Project in
energy the resulting displacement field into the space
of displacements which vary linearly with y . Assum~

ing convenient values for the material constants it

is easily seen that the projected displacement field

is  (-y¢ ,(x),w,(x)) wvhere ¢, and v, are defined
d d d d

by (Sd) . Physically 9y represents the vertical

displacement of the midline and ¢d the rotation of
the cross section,

4. The standard finite element method

Let A = {0=x0<x1<...<xn-1) be a mesh of meshsize

h, = max(xi-xi_l) , and let r 2 1. A straightforward

finite element discretization of (Sd) is




find ’dA ,

<0;.v'»d_z(od-u;,w-v'nq,v> for all w,veﬂ'(A).

©ap € BT(a) such that 6.
dA

It is not difficult to show that for fixed beam thick-

ness the approximations ‘dA and wy, converge to

‘d and wy at the best possible rate with respect

to hA in both Ho and El .

Theorem 1. There exist constants C: depending on d

but independent of g and 4 such that

o =04, € Cony thell )

Ho =0 .0, € Comalal__y

gyl € Cone gl _y

lhogmugyhy € Conzlell__y - O

.

The constants Cd cannot be taken to be independent

of d . 1ndeed for linear elements (r=1) lim et w 4o

4a+0
for i=1,2,3,4 and if r 2 2 the same is true for
i=1,2,3 , Of course the fact that the constant
C: does not remain bounded as d decreases to zero
does not necessarily mean that the corresponding error
in Theorem 1 does not tend to zero uniformly in d ,
only that it does not do so with as high a rate of
convergence as indicated in the theorem for fixed d .
In the case of linear elements, however, there is in
fact no uniform convergence at all.

Theorem 2. Let r=}l

. For any mesh A and any positiwve
number o0 < 1

o g0l > clle,

and
flugmwg, Il > oltugll
for all sufficiently small d .

This theorem suggests - correctly - that the method
(sdA) is not practicable for thin beam calculations.

I1f r > 1 the method does converge uniformly in
d . However three of the four rates of convergence
given in Theorem 1 are reduced.

Theorem 3. Let r 2 2 , There exist constants k*
independent of d , g , and 4 such that

Lr
log-eg,l € K'nllall__;

r-1
a ey

A

2
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Mwgwgall € Konglgl ) o

I

A

- 4,
avaally € KBE gl _, O

5. A mixed finite element method

Let g, " d'z(gd-u;) . We present a variational

problem equivalent to (S ) but involving ¢y as an

]

additional independent variable. Since ¢

d
sents the shear stress we refer to this formulation
as mixed.

repre-

. ol 0
Find od,udel{ and Cdéﬂ such that
<¢é,w'>¢<(d,w-v'>-<g,v> for all ¢ , v € i and (Hd)

<ed-w:,-n>-dz<(d,n>'0 for all ne & .

To discretize this system we again approximate od
and v to M° .

and wy in g and restrict ¥
in M:;l and restrict

and also approximate :d

to that space. The resulting mixed finite element

method is

find

O hia - r-1
‘dA'che M and Saa € M-l so that

- - T
<0&A,w'>#<ch,w-v'>-<g,v> for all ¥ , v € A" and (MdA)

- 2 - -1
<°dA'”dA'">-d <Cypen> 0 for all n¢ M—l'

The author has proven an abstract stability
theorem which applies to variational systems of the
form of (Hd) and (HdA).1 It follows from this

theorem that there is a unique solution to each
system and that

- I - -7
Hog-o g,y + luy wilhy + ey Taul

¢ clinf li¢ -oll. + inf Nlw ~ull, + inf__liz ~-tl]
¢€nt [ 1 wehr d 1 CGMfll d

where the constant C is independent of 4 , g ,

and A . Combining this result with a duality
argument and regularity and approximability results
for the solution of (M,) we get the following theorem
which shows that the bést possible rates of conver-
gence which can occur for fixed d hold for this
method wniformly in d .

Theorem &. There exists a constant C independent of
d, g, and 4 such that

- T+l
o ~8g 1 € cni gl _, .

- r
o=ty 0y < on flell

A

r+l
”wd-wdA" < ChA Hzﬂr_l ’

- T )
g3y, € Cnglel _, - O

Thus the mixed methods are entirely robust with
respect to beam thickness and - comparing with
Theorems 2 and 3 - are much superior to the standard
methods in this respect.



For practical purposes it is important to note
that the methods (HdA) are cxamples of mixed methods

for which the additional variable can be eliminated
analytically at the discretized level, resulting in &
reduced inlegrntiog finite element scheme,S Specif-
ically OdL and wya ™ay be defined exactly as

‘dA and ugp in (sdb) except that the integrals

occurring in the stiffness matrix must be replaced by
r point composite Gauss qQuadratures. In this way the
additional robustness of the mixed methods may be
achieved without additional computational expense,

6. Illustrative computational results

Graphs 1-12 present the results of computations
which illustrate the sbove analysis. 1In each graph
the errors in ‘d » Wy, Oé » and w; are plotted
versus the meshsize on logarithmically transformed
axes. The results for the methods (sdA) and (HdA)

are shown for linear elements (graphs 1-3 and 4-6,
respectively) and quadratic elements (graphs 7~9 and
10-12, respectively)., 1In all cases the load is
constant and the mesh is uniform. For each method
graphs are given for three cases: d beld constant
and relatively large (é=,1), & decreasing with the

meshsize (d’hsl2 for linear elements d-h2 for quad-
ratic elements), and 4 constant and relatively
small (d=.001), 1In the first case - which does not
tax the robustness of the method - both methods per~
form well, illustrating the optimal rates of conver-
gence stated in Theorems ) and 4. The second case
illustrates the nonuniform nature of the convergence
of the standard method. The lack of uniform conver~
gence of the linear method (Theorem 2) and the
reduced rates of convergence of the quadratic method
(Theorem 3) are clearly visible in graphs 2 and 8
respectively. The importance of this behavior for
practical computations is highlighted in graphs 3 and
9. For small thickness it is clearly the uniform
rates which govern the convergence until h, is
extremely small, In contrast the robustness of the
mixed methods is graphically illustrated by the fact
that the error is essentially unaffected by & and
graphs 4-6 are virtually identical,as are graphs 10~
12,
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Error in linear finite elements as function of h

Graphs 1-3: standard method @ Ho norm of error in ¢
+ H norm of error in ¢:i

Graphs 4-6: mixed method [ HO norm of error in w

0 .
8 H norm of error in w

Numbered line segments are drawn at marked slopes.
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Error in quadratic finite elements as function of
Graphs 7-9: standard method ® Ho norm of

+ Ho norm of
Graphs 10-12: mixed method A Ho norm of

-] Ho norm of

Numbered line segments are drawn at marked slopes.

h
error in
error in
error in

error in







