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Sunmary

A mixed formulation for boundary value problems in
linear elastostatics is presented. This formulation
differs slightly from the classical Hellinger-Reissner
formulation. The unknown fields are the displacement
and a tensor related but not equal to the stress. The
tensors appearing in the formulation need not be
symmetric, and consequently mixed finite elements devel-~
oped for scalar second order elliptic problems may be
applied directly.

Introduction

This note reports on continuing work of the author
and R. S. Falk of Rutgers University. A more complete
account 1s in preparation.

The following notational conventions will be
employed. Lower case letters with undertildes are used
to denote 3-vectors, lower case letters with double
undertildes denote 3Xx 3 tensors. Fourth order
tensors are denoted by capital letters, their components
by the corresponding lower case letters. The product of
a fourth order tensor and a second order tensor is
second order; thus T - Ag means

3

T = o i,j = 1,2,3.
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if X 1s a space of scalars, X denotes the space of
vectors with components in X. If Y 1is a space of
vectors, Y denotes the space of tensors with rows in

Y. The subspace of symmetric tensors in Y is denoted
Xs' We will use the space H(div,2) of square inte-

grable vector-valued functions on a domain Q with
square integrable divergences and the corresponding
spaces g(div,ﬂ) and gs(div,n).

The system of (anisotropic,inhomogeneous) linear
elasticity consists of the constitutive equations

g = Ce(w )
and the equilibrium equations
divg = f, 2)

These equations hold in the domain g ¢ B? occupied
by the elastic material and must be supplemented by
appropriate boundary conditions. The vector-valued
functions 13 and f give the displacement and imposed
force, respectively and the strain tensor g(g) is

defined as [grgd 3-+(grgd S)T]/Z. The coefficients

of the elasticity tensor C <are given functions on
satisfying
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Consequently the stress tensor ¢ 18 symmetric. The

elasticity tensor satisfies the positivity condition:
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€ :ICRB , (4)

where Yo and ¢y, are positive constants (independent
of the point X € Q@ where the coefficients are

evaluated) and
2
- T:T = Z L
Wi T
Therefore, for each x the mapping T & C:, viewed as
a linear operator on the six dimensional space le’

is invertible. Its inverse may also be written as
§t+ At with A a fourth order tensor whose coeffi-
L]

cients satisfy

(5)
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These coefficients form the compliance tensor. From (4)
it follows that
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with Yy = cgl, cy = YBI positive constants.

For simplicity, we consider the Dirichlet boundary
condition u =0 on 3% but thisrestriction is
inessential. To obtain a weak form of the resulting
boundary value problem we invert the constitutive
equations (1), multiply by a tensor <t € H (div,Q),
and use the identity N s

I E(E) T = f grgd uit = - I uediv t.
N Q ~ ~ ﬂ~ ~

~ &

The first equality holds since E is symmetric, the

second 1s Green's formula. Also testing the equilib-
rium equations against a function in y € L°(Q) we
arrive at the weak formulation, which is known as the
Hellinger-Reissner principle:

Find (S:E) € Es(div) x ? such that

f
J Ag:s + J usdivy = 0, 3 € gs(div), (7

I vedivg = I f *V, € 2. (8)
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(Note that we henceforth suppress explicit notation of
the domain Q from the function spaces and integrals.)
The variational formulation (7,8) is mixzed in that both
stress and displacement fields are present.

To define a mixed finite element method based on
this formulation we must specify finite element spaces
gh c gs(div), yh c Ez. The approximate solution

@poty) € 50 Y
analogous to (7,8) with (I'X) restricted to §hx Yh'
As is well-known the choice of the mixed finite elements

is then determined by the equations
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(i.e., of the spaces §h and !h) is a delicate one:

the approximate solution need not approximate well even
if the finite element spaces afford good approximation.
Necessary and sufficient conditfons for the quasiopti-

mal estimate

llo-0, Iy cagwy tlo-ull 5 = e fnf Llo=tll, 4,0 Hlu-vil 5]
R L T€S % L
~ s =h ~
xGYh 9)

are given by Brezzi [4]. In particular, in light of
(6) the following conditions are sufficient (the second
is also necessary):

div gh < Vo (10)
fv-div T

inf SUP T IITI~ £ >y > 0. (11)
OfVGVh OirESh ~ LZ ~"H(div)

These conditions imply (9) with ¢ depending only on
¢y and vy in (6) and y in (11).

The analogous problem of finding convenient,
accurate, stable finite elements for mixed formulations
of scalar second order problems has been effectively
solved. Here one needs spaces §H C g(div) (vector-

valued) and Vh c L2 (scalar-valued) satisfying in

analogy to (10,11)

C
div §, €V, Q12)
fv div 1
inf sup o Tl|~ >y > 0. (13)
O-VEVh 0#g€§h L2 ~ g(div)

For example, we recall the definition of Raviart-Thomas—
Nedelec spaces of order k = 0, [11,12,15]. Let a
regular family of triangulations {A '}, of 0 be

given, with meshsize lhl tending to zero. Then the

spaces

s, = {(T€H(W|YTEA 3p€ P, qep, >

1(x) = p(x) + q(x)x on T},

Vh = (v €L2 | ¥r EAh 3p¢€ Pk 3 v(f) - p(f) on ;},

satisfy (12,13) with vy 1independent of h. These

spaces approximate to 0(|h|k+1) in H(div) x L2,
and admit simple nodal bases. They have been success-
fully used in many computations, and thoroughly
analyzed [5-9,11-15]. For second order scalar elliptic
problems energy estimates, L estimates in the
separate variables, negative norm estimates, | g
estimates, superconvergence, and interior estimates
have all been shown.

Several authors have tried to adapt these
elements to the elasticity equations, but such an
adaptation is not straightforward. The difficulty
arises from the requirement that gh consist of
symmetric tensors. (Equation (7) does not remain valid
for 1 asymmetric.) In particular one cannot simply

choose S, = § (the space of all tensors with

~h

~!

x 8

h h

rows in the Raviart-Thomas-Nedelec space Sh) and
Yh = Vh x Vh’ although this choice clearly satisfies
(10,11).

A number of ways around this difficulty have been
proposed, at least in the plane homogeneous isotropic
case. Johnson and Mercier [10] developed a compesite
linear triangular element sharing many, though not all,
of the desirable properties of the Raviart-Thomas ele-
ments and showed that it gave quasioptimal approxima-
tion. In [3] Arnold, Douglas, and Gupta proposed a
family of composite elements of quadratic and higher
orders, with stability properties similar to those of
the Raviart-Thomas Nedelec elements and in particular
satisfying (10) and (11). Another approach was followed
by Arnold, Brezzi, and Douglas in [2]. 1In that paper
the symmetry of the stress tensor is enforced only
weakly via a Lagrange multiplier. Finite element spaces
for the stress, displacement, and Lagrange multiplier
based on, (although somewhat more complex than) the
lowest degree Raviart-Thomas spaces were proposed, and
the appropriate analogues of (10,11) were shown.

Each of these approaches apparently offers an
acceptable mixed finite element method for elasticity,
at least in the plane, but none fully shares the
simplicity and desirable convergence properties of the
Raviart-Thomas-Nedelec elements for scalar equations,
Here we propose a new mixed formulation for elasticity
in two or three dimensions to which the Raviart-Thomas-
Nedelec (or other) elements may be applied directly.
Our formulation differs slightly from (7,8). The
unknowns are the displacement u and a tensor p of
the form ~ 8

p = Egradu

~ -
with the coefficlent tensor E derived from the elas-
ticity tensor as explained below. The tensor e is
not symmetric and so does not coincide with the stress
tensor, but the stress components may be deduced from
the components of p simply by linear combinations and

so this formulation preserves the advantageous property
of the usual mixed formulation that the stress may be
derived from the computed unknowns without differenti-
ating.

A New Mixed Formulation

We define the auxiliary variable p by
L]

+ 8(div v)s -~ g(grad E)T, (14)

[} =
®

2

where & 1s the identity tensor. There is some free-

dom in Ehe selection of the constant B; we take
B = yo/3 where Yo 1s a positive constant so that
(4) holds. Since

div[(div w)d] = grad divu = div(grgd B)T,

the equilibrium equation (2) implies that div g = £.
Let us show how (14) may be inverted. Clearly
p = (C+gD) grad u where C 1is the elasticity tensor
ot

~

;nd D is defin;d by

Dt = tr(r)s - TT.

~ ~

If T is any tensor we may express it in terms of
three vectors, x, y, z thus:




Y3 %
4
T 2, %,y -
T
Then
2 2
T:Dr - (zxi) - |x]® - 2y.z
2

= 23 X%y - 2y+z 2z =2|x|" - 2y 2.
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Also by (3) and (4)
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[ D) /2]t Clett D /2] = v, Mt 1) /2
EE ® % 0"«

#

2
yo<xx[2+z|<g+f>/z| )
- vl Pyl ¥ r2dzl 2 4y 0.

Thus

v

v i (CHD)T = Gy 280 x| 2 + v, ([y] 24| 2] D /24y -28)y - 2
z z 0 ~ 0 ~ ~ 0 ~ ~

2 2,y 42 Yo, ;2
z (rg=28) [x[” + 8(lyl"+2lD = <.
It follows that C + BD 1s positive definite on %R
(not just on ]Rs). Let B denote its inverse. Then
2 2
v.|lt] stiBr ¢ |, T € R, (15)
2. ~ 2 o~ ~ ~

-~

with ¢y = 3/vy, vo = (c0+270/3)_1. Also Bp = grgd u.

We can now state our mixed formulation ;f the
elasticity problem

Find (p,u) € H(div) x 12 such that
T YW ~

f f

JBp T+ Ju- divt = 0, 1 € H(div), (16)
2

vedivp = feov, v € L7, 17)

Clearly the pair (p,v) solves this problem, and from
8~

(15) we easily infer that this solution is unique.
Note that we can recover ¢ from p simply as
C[Bp+(Bp)T]/2. - "~

i Bezause asymmetric tensors are admissible as both
trial and test functions in our formulation, discreti-
zation is straightforward. Let §, € H(div), VW, < 12
bg any spaces satisfying (12) and ?13). Then the

corresponding spaces §h and Yh satisfy (10) and

(11), and so satisfy the Brezzi conditions for the
discretization of (16,17), and quasioptimal approxi-
mation occurs. In particular we may use any of
Reviart-Thomas-Nedelec spaces. The various error
analyses for these elements carry over directly.

The Isotropic Case

In the case of an isotropic material the constitu-
tive law (1) has the form

o = 2ue(u) + A(div u)s, (16)
R N~ ~ N

where u >0 and A =0 are the Lamé constants. In
this case we choose B = u and (14) gives

p = ugrad u+ (H+d)(div u)s. Q17)

~

The analysis sketched in the last section shows
that a mixed method based on our formulation will
achieve quasioptimal approximation uniformly with res-
pect to u and X in any compact subinterval of
(0,2) and [0,%) respectively. However as the
material tends to incompressibility the coefficient 2
tends to infinity, and one of the reasons that mixed
methods are used for elasticity problems is that for
many elements (any which satisfy (10) and (11) for
example), the convergence is uniform with respect to
A € {0,2). (In contrast the convergence of most dis—
placement methods with low order elements degenerates
in the case of a nearly incompressible material.) Let
us recall how the uniformity with respect to A of the
standard mixed methods is proven and show that the same
reasoning applies to our method.

First recall that despite the coefficient A in
(16), g as well as u, remains bounded and regular

as A tends to infinity. The quantity X div u tends
to a limit, see, e.g., [3]. From (17) we see that p
remains bounded and regular also. s

For the compliance tensor in the isotropic case we
have the equations

242
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A
Ay = - Ty (D 12, (18)

Hence one may easily check that

s

1 2
TiAT 2 2u+31|1l ;T E

ZEE

The constant (2p+3X) 1 appearing here is the best
possible, and so the constant vy; in (6) tends to zero
as )\ tends to infinity. Nonetheless, as stated, the
convergence of the mixed methods does not degenerate as
A tends to infinity. This is because dependence of the
constant ¢ in (9) on Yy can be weakened to depend-
ence on y; given by the bound

D,2
At zylfTlY, T eR, 19)
X oz 1~ X xS
where TD =1 - tr(7)8/3 1s the deviatoric of 1. (For
~ 8 =
1 € g(div) with div T = 0, ftt(:) = 0, the Ez norm

of 1 1is bounded by a constant multiple of the Lz
norm~of TD. Hence (19) together with (10) is suffi-

R
cient to establish the first Brezzi condition. See [3]
for details.) Finally, since
2 Dy 2 1 2
! I“ + 3ler @],

I I+

(18) implies (19) with y' = 1/2u  independent of A.
Now the tensor B inverting (17) is given by

1 pAA
grgd u Bp » g YT tt(g)g.

~
~

Thus
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. o L2 __ph 2
A ng u(%+%)hr%)
> &1:D|2, T € R,

The constant u—l in this bound does not depend on
A. Consequently as long as the finite element spaces
used with our formulation satisfy (10) the first con-
dition of Brezzi holds uniformly in A. We conclude
that the finite element approximation of an isotropic
elastic material via the formulation (16,17) and spaces
satisfying (10,11) is quasioptimal uniformly with res-
pect to the Lamé constant A,

An extension of the uniformity result to some
classes of anisotropic materials will appear.
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