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INTRODUCTION

A comparison of the computational complexities of the finite
element domain method with the boundary element method for
elliptic interior boundary value problems shows that these are
roughly the same in two as well as in three dimensions, res-
pectively [16, p. 444] . Hence a decision for one of these i
methods depends on further, more specific properties of the
problem to be solved. If the solution is also required on the
boundary curve or boundary surface T , respectively, or if an
exterior problem is to be solved, then the boundary element
method will usually be preferable. Whereas usually the data
administration for the boundary element method is simple and,
moreover, a few boundary elements often provide rather accurate
solutions, one of the disadvantages of the method is seen in
the large amount of computing time for the computation of the
stiffness matrix. Here we estimate these times for two-dimen-
sional problems for the Galerkin procedure involving double
integrations and for the standard collocation procedure which
mostly is used in applications. We first compare the time con-
suming evalutations of the smooth remaining kernel functions
of both methods involving Gaussian quadrature formulas against
the order of convergence of the Lz-error terms using splines
of the same degree,

Then we compare the number of evaluations if the highest

orders of convergence, i.e. superapproximation coincide. It
turns out that here the Galerkin method needs much more time
than collocation whilst using much lower degree splines. But
even for collocation the evaluation of the stiffness matrix
with Gaussian quadrature is rather costly. Moreover, a mesh
refinement requires the new evaluation of the kernel function
values at all nodal points since these change with any changg>
of step size. i
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and ||£]] : = <f,f>s where fk,gk denote the k-th Fourier

coefficients of f and g , respectively. Note that
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<f,g> = [ £()g(t) dt .
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In Equations (1) we further specify A to be a pseudodif-
ferential operator of order 2a on T and require strong
ellipticity which in turn implies coercivity in form of
Girding's inequality:

There exists a positive constant € and a compact bilinear

form klu,v] on (HJ+G)2 such that

Re <Av,v> 2 C|lv ”i+m - Re k[v,v] for ver™*® (2)

A

AeR  will be specified later on.

Most boundary integral methods for stationary and time harmonic.
- problems in the applications belong te this class of mathe-
matical problems, for shor:i surveys see (2 , §2.31,[15] .

The most frequent cases in applications are o = -1/2 for
Symm's integral equation and related equations of the first
kind with logarithmic principal part with applications in con-
formal mapping, torsion problems, plane elasticity, Stokes
flows and electrostatics; o = 0 for singular integral equa-
tions involving Cauchy's kernel including Fredholm integral
equations of the second kind as a special case and with appli-
cations in plane elasticity and thermecelasticity, electro-
magnetic fields, acoustics, classical potential theory, incom-
pressible flows; a = 1/2 for the normal derivative of double
layer potentials and for the operator of Prandtl's wing theory
with applications in acousties, ideal flows and plane elasti-
city; o = 1 for integrodifferential operators of second
order with many applications involving periodic solutions of
second order ordinary differential equations.

For the approximations of Equations (1) we select an increa-
_sing sequence of mesh points A = {t.} , ieZ satisfying

t. =t, + 1 for fixed N and all’ ieZ , and denote
1+N 1

by Sp(A) the space of all l-periodic , w1 times continuously
differentiable splines of degree m subordinate to the par-
tition A . We also write 5 (A) for (Sm(A))p .

Then the standard Galerkin method for Equations (1) reads as:

Find w € Sm(A) > W e RY  such that e~




!|u—u + |w~w | < chs-rliu H . : ~_(€§§;

N

In case of a quasiuniform family of meshes the Estimate (6) also
holds for j+a < r < m*1/2 and r T <s S mHl .

Now we are in the position to compare the two methods. Let us
first consider the case of using the same degree splines
Sm(A) for both methods. Further let us restrict to quasiuniform
families of meshes and smooth solutions. Then the highest rate |
of convergence achieved by the collocation method is '
3 b . . . . '
o" ! Za) in H2a , whilst the Galerkin method converges with
rate O(h

2m+2-20 . 20~-m-1
) in H
in Figure 1 .

. This situation is summarized
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where a' = min{a,0} .

Besides the above stability estimates we also need consistency
which corresponds to the numerical accuracy of the elements in
the stiffness matrices. To this end let us denote by

Bgp U AMpW, s g T B L  Yy = My

the Galerkin weights and by g K o gk . Y their numerically
1ntegrated counterparts. The latter é«fjwe by
n

<Ahuf,’uk>o = glk ’ <§hw’uk>o = gkw ? “h”z = Yl

linear mappings Xh-: S ) - S (a) , m,h : R S (A) and
Xh : S (A) > R whlch are apprwx1mat10rs to PhAPh,P B
and APh , respectively.

Correspondingly we denote by
Co = Aui(;k) and e = B(t ) . Aul = v,
the collocation weights, by -clk s ck ’ yz their numerically

integrated counterparts and by XA ’ %A s AA the corresponding
approximations to IhAP , IhB and A defined by

n n 47 n
K (g =€y and Bi(r) =, Ky =, .

Theorem 2.2: Let the degree of precision of the numerical
integrations of the weights be L L[5, p. 491, i. i.e, let us
assume

YY) V)
leg 8| + Blgg g | + hlv,~v,|

| N
le gl * Ble, R AN

chL+3 ,
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®

chL+2 .

A

Then the correspondlqg operators provide the conslsten_z
estimates ~




. provided -m-1420a S r < s <mtl , r < m + %., SIS

respectively
N n '
ll?A_uIL + |mA~m| o (12)
) [ AR | - -
< c(hL+l+2a +(-r) |lf|l_2u + B rllflls-za)' ’ t

provided 2o<r<ssm+l, (-v)' = ain {0,-r} , r < m * %-.
Since the proof is very similar to the proofs of [18, Theorems
6.3, 6.4 and 7.2] we omit the details.

3. COMPARISON INVOLVING GAUSSLAN GUADRATURE

Most numerical implementations uf the Galerkin or the collo-
cation method are based on Gaussian quadrature formulae on the
patches, i.e. on the subintervalls [t;_j,t.] . For singulari-
ties of the kernels, however, a special treatment is necessary.
Therefore we shall require in the fellowing that the operator
A has c¢onvolutional principal part, i.e.
o
Au thru + Azu =

. A3

~j(p](t-r) + logle-rls Teeedhi{uldt + [R(e,Dult)dt ,

vhere pr and p; are homegerecus functions of degree

B = =20 = 1 and where K denotes 2 swmooth remaining kernel .
(15],[18]. Moreover, let the family of meshes A be uniform
and the spline spaces S_(A) be generated by one shape func-
tion u(n) ~as in [18, Cﬂap, 2.571 . Then the weights of the
principal part can be computed in terms of a Toeplitz matrix
whose entries we consider to be known exactly. For the Galerkin
method these are given by

(Apg,m) = b/ 2% [y p(t ="+ (2-k))u (t Iu(r')de "dr"

(supp w)? -
+log h [f p, (t"-7'+(2-k))u(tu(r')de 'dr"}

(supp u)?

, (13)

where p -‘pl +p, log|+|, whereas for collocation we have
A (e) = b 2% [ pee- 2o Ger)ucetyat
1"8 7k 2
supp u , (14)

+logh [ p,(t'- Tl 4 (2)du(eNar').
A _ supp u R

(For special equations see [8, Section 31.) Lo

For all remaining integrals on =2ach patch we use a Gaussian

quadrature formula with degree L »of precision [5). This -
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Now we balance the errors in (2.10) finding e
LG.2 2mc f I - 2(a'+a) in case 2q < me + | (15)

and

LG = L in case m, + 1 < 20 < 2mG + 1, (16)

Similarly we find for collocaticn from balancing the errors in -
(12) , _. :
L ?- - i ® A :

e 2, 2a (17)
Note that in general the reguirved degrees of precision LG and ;
L, for the Galerkin method, respectively, collocation ‘
will be different. In Table ? we compaye again the numbers of
evaluations of the kernel functinn depending on the order of
superapproximation for various « . For twe-dimensional
-Gaussian quadrature we refer to {5, p. 424 and 427]. '

a -%. o ; 1

order |3 5 7 92 4 & al3 5 712 4
m. |0 1 2 3]0 - kkkkkk 3:1 23
Lg (3 57 91 : g 4 Ma 1 35
w [ TR | T
o [1.3.5 71135 7212 5 71335 9
L. 1357 91135 7]35 3|35 3
e |2 3 4 511 2 3 4|2 3 4]2 3 4

Table 2: Evaluations per element of the stiffness matrix for
same optimal superapproximation orders.

Note that also inthis case the evaluation of the stiffness ma-
trix for Galerkin's method requires almost always. significantly
more time than for the collocation method. But one should be
aware of the fact that the latter deals with more than twice
higher degree splines yielding more complicated coding and

much higher requirements for the smoothness of I' and the
boundary charges u .

The reason for all the trouble is the uze of Gaussians quadra-
ture formulas that implies computational expenses of orders

Nzo(eg) = h_z(eg), respectively, Nz(ec3 = hmz(ec) for the
evaluation of the stiffness matrix. As we shall see in the
following section, the consequent use oi the regular nodal -




Y M m=0 =] m=2 T
b, b, b, by b, | b b b, b,
0 1 - T - - 1 - - -
"o I3 T -3 1
12 24 6 12 4 8
2 13 4 -1 12 7 1
1 30 15 60 5 30 15 |
7 [, 358 157 19 1 -
945 630 315 945 ?

|

Table 3: Weights of numerical integrations against splines. ?

If the computation of the values of the kernel functions at the
grid points is executed in advance and these values then are
stored for further use then the transition of the method to
different shape functions can be done in a most efficiént way
(see [7, Table 4]) .

The computational expense for computing the stiffness matrices
now depends only on y and iz proportional to

Gs-)zNZ = (‘\{G'h).‘2 for the Galevkin collocation and to
G ‘ .

1, -2

Qgt)Nz = Y; h ¢ for the collocation with grid point quadrature.

c

For comparison we consider again the two cases as in Section 3.

Comparison for same orders of L,-errors

With same splines for both methods we balance
2M + 1 + 20' 2 m = order -1 .

In Table 4 we collect orders, M and vy for the four cases
o = - %30,%31 and observe that here always y =1, i.e. we

need only one function value per stiffness element (and appro-
priate organization of the code) in contrary to the case using
Gaussian quadrature, Table 1. =
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- compete with the above collocation since the correspondxng-——z
splines are of less than haif the degrees. If we compare the
Galerkin collocation with Galerkin's method using Gaussian
quadrature (Table 2) then we see again that Galerkin collo-
cation is significantly faster and hence superior.
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