Spike correlation measures that eliminate
stimulus effects in response to white noise
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Abstract

When measured in response to non-repeating white noise, standard covari-
ance measures of two neuronal spike trains contain components due simply
to a shared stimulus. We argue that, without stimulus repeats, model-free
measures cannot in general remove these stimulus-induced components. We
present spike correlation measures that eliminate them when the neural re-
sponse can be approximated by a linear-nonlinear system. One of these
measures fully characterizes the correlations in the special case that all re-
maining correlations are due to small reciprocal connections between the
neurons. In addition, we demonstrate that the proposed measures can give
accurate results with a more realistic, integrate-and-fire model of neural re-
sponse, provided that it is driven like a linear-nonlinear system.

Keywords: neural networks, correlations, Weiner analysis, white noise,
correlogram

1 Introduction

Data from simultaneous recordings of two spike trains in response to a com-
mon stimulus are typically analyzed using the correlation between the spike
times of the two neurons. Correlations between the spike times could be
induced by a number of factors, including (but not limited to) the presence
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Figure 1: Schematic of two neurons whose responses are independent when
conditioned on the stimulus. Given a particular stimulus X, the spike re-
sponses (R; and R,) are independent. However, in general the responses
are not independent because the common stimulus introduces dependencies
between the two spike trains.
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of the common stimulus and the structure of the neural network containing
the measured neurons [16, 1, 15, 2].

Correlations due solely to the fact that the neurons are responding to the
same stimulus are relatively uninteresting. As explained below, a common
stimulus will in general lead to spike correlations. A more useful correlation
measure will determine if there are other sources of correlation as well. One
may be interested in determining if two neurons respond to common stimulus
features due to the connectivity of the neural network. (The neurons may
simply be responding to the same stimulus features independently.) Before
one can make inferences based on spike correlations about the underlying
circuitry, one must, at minimum, remove contributions to the correlations
due simply to the common stimulus.

Removal of stimulus-induced correlations is based on the fundamental no-
tion of independence conditioned on the stimulus. If two neurons respond to
a stimulus X independently, they are said to be independent conditioned on
the stimulus, schematized in Fig. 1. However, since the neurons are respond-
ing to a common stimulus, the spike trains will in general be dependent. This
dependence typically leads to a correlation between the spike trains.

Mathematically, the responses of two neurons are independent condi-
tioned on the stimulus X when

Pr(R. = 1& R} = 1|X) = Pr(R} = 1|X) Pr(R} = 1|X), (1)

where R;, = 1 if neuron p spiked at the discrete time point ¢ and is zero
otherwise. When the stimulus is known, the probability of a spike pair from



the two neurons is completely determined by the spiking probability of each
neuron separately.

When Eq. (1) is satisfied, the neurons are not interacting and one would
like the expected value of a correlation measure to be zero. In that case,
significantly nonzero values of the correlation measure would indicate that
the neurons’ responses to the stimulus somehow depend on each other. Since
such a correlation measure contains only stimulus-independent correlations
(as stimulus-dependent correlations have been removed), we refer to it as a
stimulus independent correlation measure (SICM). More precisely, a SICM is
a correlation measure whose expected value converges to zero as the sample
size increases whenever Eq. (1) is satisfied.

Scientists have long recognized the need for SICMs, and standard SICMs
are commonly used to analyze spikes in response to the repetition of an identi-
cal stimulus. When the stimulus is repeated, one can estimate Pr (Rf, =1 |X)
by averaging the response to the stimulus (obtaining the peristimulus time
histogram or PSTH). Since one can similarly estimate Pr(Ri =1& R} =
1|X) by averaging over the stimulus, one can obtain estimates of all the
quantities in Eq. (1). By subtracting the estimates of both sides of Eq. (1),
one forms the joint peristimulus time histogram (JPSTH) [16, 1]. This obser-
vation is a simple proof that the JPSTH and the shuffle-corrected correlogram
(the sum along the diagonals of the JPSTH) are SICMs [15, 2].

A further challenge is to develop SICMs for experiments, such as white
noise and related experiments, where one does not repeat a particular real-
ization of the random stimulus. In such experiments, one is sampling a large
stimulus space and would like to avoid repeats that, for a given experiment
duration, would reduce the size of the sampled space and increase the noise.
Unfortunately, when the stimulus is not repeated, one cannot estimate the
probabilities in Eq. (1) (other than by the value of the one sample recorded)
without specifying additional assumptions on how the neurons’ responses de-
pend on the stimulus. For this reason, one cannot derive model-free SICMs
for such experiments.

One could develop a strategy to remove stimulus-dependent correlations
based on the model that stimulus-dependent effects occur at a different time
scale than the pertinent correlations. If this model were correct, one could
filter out the stimulus effects with a bandpass filter [17]. But, not only won’t
the resulting measure necessarily be a SICM, the filtering might also remove
stimulus-independent correlations.

One could also attempt to develop a modification of the JPSTH based on



the model that a neuron’s response is primarily determined by the stimulus
during a small window in the past. When one uses a random sequence of
a discrete number of stimuli, this model implies that the neuron’s response
depends only on the previous few stimuli. One could theoretically form a
JPSTH for each distinct combination of such stimuli, and this JPSTH would
be a SICM, assuming the model were correct.

However, when the stimulus is multidimensional, the number of possible
sequences is so large that each combination will rarely occur in a realistically
long experiment. For example, even in the subspace experiments designed
by Ringach et al. [20], where the stimulus is a sequence of random gratings,
one would typically have over 10® possible combinations. With fewer than
10% presentations in a typical experiment, most combinations would not be
presented even once® [19].

Using standard white noise analysis as a starting point, we demonstrate
two SICMs that are based on a simple phenomenological model of a linear-
nonlinear system. As with any model, this framework limits the applica-
bility of this analysis to neurons that can be approximated by the model.
The motivation for starting with the linear-nonlinear model is its simplicity
and the fact that the linear-nonlinear model is commonly used to analyze
neurons in the auditory, visual, and somatosensory systems [17, 12, 6, 7,
10, 11, 4, 5, 18, 20, 9, 8]. We demonstrate that the proposed SICMs also
give good results with simulations of integrate-and-fire neurons driven like
linear-nonlinear systems, indicating broader applicability of the SICMs than
to just linear-nonlinear systems. We also demonstrate that modifications are
needed to broaden the applicability of the approach since the current form
of the method fails when the neural response is fundamentally nonlinear.

2 SICMs for linear-nonlinear systems

Let the stimulus X be a vector of independent Gaussian random variables
with zero mean and standard deviation o. Without loss of generality, let
o = 1. The stimulus X is a discrete approximation to temporal or spatio-
temporal white noise.

Tf one used only 500 different gratings and assumed the neuron responded to only the
previous three, one would have 5002 ~ 10® combinations. If one selected a random grating
50 times a second for an hour, one would have a total of 602 x 50 = 1.8 x 10° presentations
of a grating.



Assume the neurons’ responses are independent given the stimulus. Let
the probability of a spike of neuron p for p = 1,2 be a linear-nonlinear
function of the input,?

Pr (R, =1|X =x) :gp<f1;,-x) (2)

where 1_12, is the linear kernel of neuron p shifted 7 units in time (normalized
so that ||h}|| = 1), and g,(-) is its output nonlinearity (representing, for
example, its spike generating mechanism). See, for example, Ref. [3] for a
discussion of the linear-nonlinear model.

We assume the output nonlinearity can be approximated as an error func-

" la) = 21+ et (‘ =), g

where 7, is the maximum firing rate,? Tp is the threshold, €, defines the
steepness of the nonlinearity, and erf(z) = % Iy et dt.

We chose an error function nonlinearity so that the results could be com-
puted analytically. For other forms of nonlinearities, one could compute
numerical results similar to those in Ref. [14]. However, given the low firing
rates of neurons in response to white noise stimuli, the precise form of the
nonlinearity appears to make little difference [13].

2.1 First SICM for linear-nonlinear system

We sketch the derivation of a SICM for the linear-nonlinear systems. Through-
out, we use the notation (-) to indicate averaging over a (finite) realization
of the white noise stimulus and E{-} to indicate expected value over all pos-
sible realizations. (Note that since the stimulus and the neural response are
stationary, the expected values will typically depend on one fewer temporal
index than our notation implies.)

2We use an overbar to denote model parameters and reserve the unbarred notation for
estimates of the parameters from measured statistics.

3We allow the maximal firing rate 7, to differ from the reciprocal of the temporal
discretization interval so that the nonlinearity is not tied to the choice of discretization.
The model allows for interspike intervals shorter than 1/7,, consistent with the fact that
the linear-nonlinear model as written implicitly assumes spike trains that are a modulated
Poisson process, at least in the limit of small temporal discretization.



It turns out that with a white noise stimulus, the only important geometry
of the kernels B; is their inner products (at different temporal shifts of £ units
of time), hi *.h. Since the kernels are normalized to unit length, their inner
products lie between —1 and 1 and can be considered a cosine of an angle
between the vectors,*

cosff =hi"* . h!. (4)

When cos 0%, is large, neuron 1 responds to similar stimulus features that
neuron 2 responded to k time steps earlier. Small cos #%, indicates a response
to dissimilar stimulus features.

In our notation, the measured correlation of a spike in neuron 1 and a
spike in neuron 2 occurring k time steps earlier is given by (R: RS ™). When
neural response is given by Egs. (2) and (3), one can show [13] that

17 nT, 0T
E{(RLE M)} = 2 derfe (\1[1 \2[2 5152(:03921) (5)
where
5y =1/1/1+2, (6)

and the double complementary error function is defined by the intimidating-
looking formula

derfc(a, b, c) \/_/ eV erfc j__i)dy. (7)

In fact, the double complementary error function is simply a two-dimensional
analogue of the familiar complementary error function erfc(x) = 1 — erf(z).

We assert, leaving the proof to the reader, that the double complementary
error function derfc(a, b, ) is the area under the tail section graphed in Fig. 2
of the surface

" exp(—[a? +a3)). (5)

*With this normalization and a white noise stimulus, the nonlinearity arguments in
Eq. (2) are normal random variables with mean zero and variance one, and their covari-
ances are cosﬁ
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Figure 2: Sketch of (a finite portion of) the tail section defining the double
complementary error function. Letting x be the vector (z1, z3), the required
tail section (shaded) is defined by x-u > a and x-v > b where u and v can
be any unit vectors with u-v = ¢ (c is cosine of the angle between u and v).
The thick boundary lines are perpendicular to u and v and are a distance
of a and b from the origin, respectively. From the radial symmetry of the
surface (8), the area depends only on «, b, and ¢ (and not on the choice of
unit vectors u and v).



Note that derfc(a, b, ¢) is symmetric in @ and b. When ¢ = 0, the boundaries
of the tail section are perpendicular, and the double complementary error
function separates into a product of complementary error functions:

derfc(a, b,0) = erfc(a)erfc(b).

This property of the double complementary error function yields an im-
portant consequence for the correlation given by Eq. (5). If the two linear
kernels happen to be orthogonal at a particular shift k¥ so that cosf% = 0,
then

BRI} = [Serte(20)] [Zerte(22)]. o)

Since, as previously shown [14], the expected mean rate of neuron p is

, 7 6,1,
E{(R)} = Le fc(—p p),
(R} = Forte( 27
the expected value of the correlation in this case is simply the product of the
mean rates

E{(R\Ry™")} = BE{(R)}E{(R;™")}. (10)

The covariance between the response of one neuron and the (delayed)
response of the other is

Ch = (R1Ry™") — (R)(R; ™). (11)

The covariance is reminiscent of the shuffle-corrected correlogram. Even
though the averaging () is over differing stimuli, one might expect that C* is
close to a SICM since the realizations of the stationary stimulus are statisti-
cally identical. Indeed, Eq. (10) implies that the expected value of C is zero
(at least for large samples) whenever the kernels are orthogonal.

However, the covariance is not a SICM when the kernels are not orthogo-
nal. By taking a Taylor series of derfc(a, b, ¢) around ¢ = 0, one can see that
the expected value of C¥ is nearly proportional to cos 6%, at least for small
values of the cosine. When the kernels are orthogonal, neuron 1 and neuron
2 are responding to dissimilar features of the stimulus. In this case, there
are no stimulus-dependent correlations and its not surprising that the co-
variance is zero. Whenever the neurons respond to similar stimulus features
(cos 05, # 0), the covariance is nonzero.

8



We propose a correlation measure that takes into account the full corre-
lation calculation in Eq. (5). As described in Ref. [14], one can calculate all
the parameters of the model (Egs. (2), (3) and (6)) from measurable statis-
tics. The only statistics we need to measure are the mean rates (Rj,) and the
stimulus-spike correlations (XR;). The kernel for neuron p is proportional
to the stimulus-spike correlation in the large sample limit, so we estimate it
by

- (XR})
P = Xy

We determine 7}, and §, (estimates of T,, and J,) from the magnitude of the
stimulus-spike correlation |(XR})| and the mean rate (R}) using

iv_Tp opTp
(Ry) = 5 erfc( /2 ) (12)
and
. 7,0 6272
X % —_ _P7p _ppP 1

(KR = 7 exp (=57 (13)

We then define the following correlation measure
S* = (RiRy™") — vy, (14)

where v%, is the expected value of (R R, ") given the measured parameters,
0Ty 94T,
V27 V2’

and cos 0% is the estimate of the kernel inner product h} * - h,

77
g qderfc(

- 1 dp04 COS 0&), (15)

(XR. ") - (XR)
[(XR) (X R

cos by = (16)

(We assume 7; and 7y are known from other considerations, cf. Ref. [14].)
Eq. (5) implies that E{S*} — 0 as the sample size increases. S is our
first SICM for linear-nonlinear systems.



2.2 Second SICM for linear-nonlinear system

One can further exploit the linear-nonlinear framework to characterize the
correlations in S if one makes further assumptions about the source of the
correlations. We demonstrate an example where the two linear-nonlinear
neurons are coupled together in a caricature of synaptic coupling. In response
to a spike of neuron ¢, the spiking probability of neuron p after i time steps
is modified according to the factor WJ The quantity WJ is simply added
underneath the nonlinearity.
The resulting model of the coupled linear-nonlinear systems is

Pr (R, =1|X =x,R, —rq)—gp(hZ X+Z T ), (17)

Jj=>0

for p,q € {1,2}, ¢ # p. We sketch a derivation of a SICM that approximates
the coupling terms I/V12 and WQJ1 This SICM gives an intuitive interpretation
of the correlations in §. Moreover, it normalizes the correlations into units
of the stimulus standard deviation and removes the temporal filtering of the
correlations caused by the structure of the kernels. These properties are
demonstrated in section 3.

The derivation of this SICM is given in Ref. [13]. Here, we simply de-
scribe the ideas underlying the derivation. The main assumption is that
the coupling terms W7, and WY, are relatively small so that we can neglect
terms with quadratic and higher powers of the coupling terms. We can then
compute an approximation of the expected correlation E{(R}R5*)} that is
linear in the W.

From the previous section, we know that the expected value of (R} R, *)—

V%, is zero when all WJ are zero. Since we are linearizing with respect to the

qu, this expected value must be a homogeneous linear function of the qu,
which we write as
E{(R{Ry ") —v5} = ZAS{WQJI + ZAl_ijWfQ? (18)

720 720

where = indicates the equality within O((qu)Q) as the sample size increases.
If we can determine the values of the A% we are nearly done, needing only
to solve Eq. (18) for the WJ,.

To determine the A%, we calculate T), &,, and cos 6}, using Eqs. (12),
(13), and (16) as before. In this case, these quantities include the effects of

Py’
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the coupling and are no longer estimates of the model parameters T}, Sp, and
cos 9&. Instead, T}, d,, and cos ng measure the effective parameters for the
system treated as uncoupled linear-nonlinear neurons of the form given by
Eq. (2). These effective parameters are useful because, if no cos?, is close
to one or if ; and d, are not close to one, then we can find an approximate
formula for the A’s in terms of T}, J,, and cos qu. For completeness, we write
the (complicated) formula in Appendix A.

Therefore, if one knows 7, and measures (R.), (XR!), and (R{R5 ") in
response to a white noise stimulus, where £ = —N,..., N, all unknowns
from Eq. (18) are determined except qu. One has 2N — 1 equations for 2N
unknowns (W¥,, Wi, 5 =0,...N).

Since our system has more unknowns than equations, we reduce the num-
ber of unknowns to 2N — 1 by merging the zero-delay interactions into one
quantity, setting W, = WY%. To reflect this reduction and to simplify the
notation, we define a total connectivity W by

W, for j < 0,
W7 =W+ Wy forj=0, (19)
Wi, for j > 0.
Similarly, we define a new matrix A by
Ak for j < 0,
AN = S (AR + AR)/2 for j =0, (20)
AkI for j > 0.

In this notation, Eq. (18) simplifies to
E{(RIR;*) — vj} » ) AMW. (21)
J

We can now define our second SICM W, which approximates W7, by
W=A"'S, (22)

where we use matrix-vector notation and A~! indicates the matrix inverse
of A. The fact that W is a SICM is clear because S is a SICM. Since
E{WJ} — W7 (approximately) as the sample size increases, W can be viewed
as a measure of the effective connectivity of the neurons (assuming, of course,
that we somehow knew the stimulus-independent correlations were due to
mutual coupling).

11



3 Results

We demonstrate the SICMs S and W by comparing them to the covariance
C from Eq. (11). We first simulate pairs of linear-nonlinear neurons. Then,
we simulate pairs of integrate-and-fire neurons to see how well the analysis
generalizes to more realistic neuron models.

3.1 Linear-nonlinear neuron results

For each example, we simulate two linear-nonlinear neurons with firing prob-
abilities given by Eqgs. (17) and (3) with nonlinearity parameters 7#; = 7y = 1,
Ty =2,T, =25, ¢ =0.5, and €, = 1.0. These parameters yield mean spike
rates between 0.035 and 0.04 spikes per unit time in response to spatio-
temporal white noise.

The linear kernels used in the simulations are two-dimensional in spatial
coordinates j = (ji,72) for each time ¢. For neuron p = 1,2, we used the

form
_ (t=bp) _lil2

h,(j,t) = (t —by)e ™ e 3 sin((j1 cos gp + j28in @) f) (23)
for t > b, and l_lp(j,t) = 0 otherwise. We sampled this function on a 20 x
20 x 20 grid in space and time, normalizing the resulting vector to obtain the
unit vector B;. Units of ¢ and j are in grid points. We fixed the parameters
f:06, b1:0, bQ=3,andqu1=0.

The kernels were chosen to be caricatures of the linear receptive fields
measured in visual simple cells. As stated in section 2.1, the only important
geometry of the kernels is their inner products cos G_qu = }_1;',_’C -_l_lfl. In the
example simulations, we vary 7, and ¢9 to alter the form of cos 0]’5(1.

For each simulation, we measure the spikes in response to white noise
and calculate the three correlation measures C, S, and V. Each kernel inner
product was estimated using bias reduction methods similar to that described
in Ref. [14]. For each correlation measure, we also estimate confidence in-
tervals as detailed in Appendix B to provide a gauge on the significance of
nonzero values. These confidence intervals approximate one standard error
of the measurements. These estimates tend to overestimate the variability
compared to estimates from repeated identical simulations (a luxury we have
only with simulations), so care should be exercised in their interpretation.

In the first example, we let 7, = 1 and ¢, = 7/8, and keep the neurons
uncoupled (W7 = 0 for all j). We simulated the neurons for 100,000 units of

12



= I =

20 10 0 10 20
Delay

-20 -10 0 10 20
Delay

Figure 3: Correlation measures for a pair of uncoupled neurons with similar
linear kernels. (a) The kernel inner products cos 6, (solid black line), cos 61,
(dashed black line), and cosfly, (solid gray line). By definition cos %, and
cos 0%, are symmetric and one at zero delay (k = 0). (b) Covariance (black
line) showing the high correlation when neuron 2 fires three units of time after
neuron 1. At this delay, the kernels match closely (cos 6, is large). In panels
(b)—(d), the solid gray lines approximate confidence intervals of +1 standard
error of the measure. Covariance is in units of (spikes/unit time)?. (¢) The
SICM S (black line) eliminates the stimulus-induced correlation, showing
that the neurons are uncoupled. & is in units of (spikes/unit time)?. (d)
The SICM W (black line) also eliminates the stimulus-induced correlation.
W is in units of the stimulus standard deviation. Delay is in units of time

and is the spike time of neuron 1 minus the spike time of neuron 2.
13



time, obtaining 3,000-4,000 spikes per neuron. As shown in Fig. 3a, cos 6%
nearly reaches 0.8 for £ = —3 because neuron 1 responds to nearly the same
stimulus features as neuron 2 did 3 time steps previous. As a consequence,
the spike times of the neurons are highly correlated (Fig. 3b) even though
the responses are independent when conditioned on the stimulus. This cor-
relation is simply due to the similarity of the two kernels and is completely
captured by the angle between them, cos 6% .

The fact that the correlations were due simply to a shared stimulus is
revealed by the SICMs & and W, graphed in Fig. 3c-d. Both § and W
completely eliminate the correlations. They are zero within the level of the
noise as estimated by the confidence intervals.

Next, we let the neurons be coupled by mutual inhibition with a delay
of 3 units of time by setting W/ = —0.3 for j = —3,3. The results from
simulating 100,000 units of time, obtaining 3,000-4,000 spikes per neuron,
are shown in Fig. 4. As shown in the plot of the covariance C (Fig. 4b), the
connectivity is masked by the stimulus-induced component of the covariance.
The inhibition from neuron 1 to neuron 2 occurs at the peak of the stimulus-
induced correlation. Although it reduces the size of the stimulus-induced
peak, the presence of the inhibition cannot be deduced from the covariance
alone. The inhibition from neuron 2 to neuron 1 is visible as a small dip
at t = 3 but is dwarfed by the peak at t = —3. A naive interpretation of
the covariance would lead to misleading inferences on the underlying neural
circuit.

Both SICMs better reflect the simulated connectivity W7 as shown in
Fig. 4c—d. The stimulus-induced peak is eliminated, and the measures have
two sharp dips at both t = —3 and ¢t = 3. The dips in S give the misleading
impression that the connectivity at ¢ = —3 is stronger. The dips in W,
however, are nearly identical. Their magnitudes are even near the simulated
values of —0.3, though they slightly underestimate the magnitude of the
mutual inhibition.

The connectivity-induced dips in & and W are only slightly beyond the
level of the noise. To demonstrate more clearly the significance of these dips,
we doubled the simulation length to 200,000 units of time, obtaining roughly
7,000 spikes per neuron. With more data, the noise level is reduced, and the
connectivity-induced dips are well beyond the noise (Fig. 5).

A third example demonstrates how W accurately reconstructs the con-
nectivity even when the correlation between the spikes is distorted by the
temporal structure of 1_12,. We increase 7, to 5 in order to increase the effect

14
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Figure 4: Correlation measures for a pair of mutually inhibited neurons with
similar linear kernels. Except for negative coupling of magnitude —0.3 at
delays of —3 and 3, the neurons are identical to those from Fig. 3. Pan-
els are as in Fig. 3. (a) The measured kernel inner products are changed
little by the connections. (b) The stimulus-induced correlation masks the
coupling-induced correlation in the covariance. (c¢) Having eliminated the
stimulus-induced correlation, the SICM § reveals the negative coupling be-
tween the neurons, although it makes them appear unequal. (d) The SICM
W not only eliminates the stimulus-induced correlation but also estimates
the magnitudes of the negative coupling relatively accurately.
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Figure 5: Identical simulation as in Fig. 4 but with a simulation that is twice

as long. The negatively coupling estimated by & and W is more clearly seen
to be significant. Panels are as in Fig. 3.
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and set ¢, = /2 so that the kernels are effectively orthogonal.® In this
case, the covariance (as well as the SICMs) will be approximately zero when
W3 = 0 because cos 65, ~ 0 (not shown).

We couple the neurons by mutual excitation (W7 = 0.4 for j = —3,3). To
emphasize the relatively subtle effect, we run a longer simulation of 300,000
units of time, obtaining approximately 11,000-12,000 spikes per neuron. The
results are shown in Fig. 6. The inner products of the kernels with them-
selves, cos ], and cos 6, (Fig. 6a), decay only slowly to zero as the shift j
is increased. These broad peaks reflect the broad temporal structure of the
kernels that will filter connectivity-induced correlations.

Indeed, the covariance shows not only the sharp peaks at t = —3, 3 cor-
responding to the connectivity but also a wide peak centered around ¢ = 0
(Fig. 6a). The structure of the wide peak corresponds to the structure in
cos #, and cos 65,.

The SICM S reduces some of the wide peak (Fig. 6¢). It differs from C
even though h! is approximately orthogonal to h% ¥ only because the mutual
excitation increased the measured cos %, (Fig. 6a). Though reduced in mag-
nitude, the broad peak is still significant, rising above the confidence intervals
around zero delay. The advantage of the SICM W is that it eliminates the
broad peak caused by the filtering. VW even comes down to zero between the
two sharp peaks (Fig. 6d).

3.2 Tests with integrate-and-fire neurons
3.2.1 Integrate-and-fire neuron model

The SICMs we derived were based on the simple linear-nonlinear model. To
test the robustness of the measures to deviations from the linear-nonlinear
model, we simulated a pair of integrate-and-fire neurons. The evolution of
the voltage of neuron p in response to input g,(¢) was given by

T2+ (V= &) + (0)(V; — £) =0 (24)

5The fact that the spatial axes are orthogonal (¢1 = 0 and ¢» = 7/2) does not neces-
sarily imply that the resulting kernels would be orthogonal as vectors (hi - hi™* = 0). In
this case, they are orthogonal because one kernel is odd-symmetric along the same axis
that the other kernel is even-symmetric. If, for example, the spatial phase were changed
(say, from a sine to a cosine), the inner product would increase.

17
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Figure 6: Correlation measures for a pair of neurons with dissimilar linear
kernels that are coupled with mutual excitation of magnitude 0.4 at delays
of —3 and 3. Panels are as in Fig. 3. (a) The broad temporal structure of
the linear kernels leads to wide peaks in cos #; and cos fs5. The coupling has
introduced a small broad peak in cosfy;. (b) The correlations induced by
the connectivity are filtered by the temporal structure of the linear kernels,
creating a broad peak in the covariance centered around zero delay. (c) The
broad peak is smaller in 8 but still present. (d) W eliminates the temporal
smearing, faithfully reproducing the excitatory coupling.
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with membrane time constant 7,,, and equilibrium potentials &£, = —65 mV
and £ = 0 mV. A spike was recorded at times 77 when V,(T7) reached 55
mV. After the spike, the voltage was reset to —65 mV and held there for an
absolute refractory period of 7.y = 2 ms.

The input conductance g,(t) is unitless because we have divided through
by the resting conductance. The input conductance to neuron p was com-
posed of internal input from the other neuron g¢**(¢) and external input

. p
95" (1),
gp(t) = g (t) + 5™ (t).

The internal input to neuron 2 was set to zero, g&**(t) = 0. The internal
input to neuron 1 was set to reflect an excitatory connection from neuron 2
with a delay of A = 40 ms,

G (1) = Gine Z_ Gt—T) —A), (25)

where g;,; gives the maximum of a single unitary conductance. The unitary
conductance waveform was given by

e’ 2 Ts
G {5 >0
0 otherwise,

with time constant 7;. G(t) is defined so that its maximum is 1 (at ¢ = 27).
The external input was given by

g;zt(t) = Gext Z G(t - Tejmt,p)
J

where ge,; gives the maximum of a single unitary conductance. The Tg'm,
were drawn from a modulated Poisson process with rate given by a function
of the input 7,(X).

In most examples, we set the input rate so that the integrate-and-fire
neurons were driven like linear-nonlinear neurons. In particular, the input

rates were threshold linear function of the input
_ "
rp(X) = afh} - X] (26)

where o determines the average input rate, and [z]" = z if ¥ > 0 and is
zero otherwise. We used the same kernels h;; as in the previous section (Eq.
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(23)), only with by = 40 ms, 7, = 10 ms, and ¢o = 7/6 (all other parameters
were unchanged). We sampled the kernel using a temporal discretization of
2 ms, keeping 50 grid points in time and a 20 x 20 grid in space.

To demonstrate the limitations of the method when neurons are not
driven like linear-nonlinear systems, we simulated an example where the in-
put rate was a fundamentally nonlinear function of the input

rp(X) = a* [} - X]" + o [-h-X]". (27)

When o' and o~ are similar in magnitude, a large component of the input is
independent of the sign of the stimulus components. This sign independence
is impossible with a linear-nonlinear system, and we would not expect the
current form of the method to perform well for such a neuron.

We set, the stimulus discretization to be 10 ms, slower than the temporal
discretization since a monitor frame rate of 500 s~! is unrealistically fast. We
decreased the stimulus magnitude so that the discrete white noise still had
an effective power of 1 at the temporal discretization of 2 ms.® Assuming we
don’t attempt to resolve temporal structure finer than 10 ms, this deviation
from the model assumptions has little effect.

The evolution of the integrate-and-fire neurons was simulated using a
second-order Runge-Kutta method modified for integrate-and-fire neurons
[21], obtaining five digit accuracy with a time step of 0.05 ms.

3.2.2 Integrate-and-fire neuron results

To test the method for a wide variety of integrate-and-fire parameters, we
simulated the pair of neurons using six different combinations of membrane
time constant 7, and synaptic time constant 7,, as shown in Table 1. For
each time constant combination, we set the coupling strength g;,; so that
the magnitude of the stimulus-induced correlation and the magnitude of the
connectivity-induced correlation were approximately equal (as measured by
the covariance C).

For each time constant combination, we ran simulations with both small
and large external unitary conductances ge,:. For small g.,¢, we set o = 1000
s~! so that the average input rates was nearly 400 inputs per second. We

adjusted ge,+ so that the average firing rate of the neurons was between 5 and

6To compensate for the stimulus that was 5 times slower than the temporal discretiza-
tion, we let the standard deviation of each stimulus component be 1/1/5.
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Tm Ts gint o gezt
5ms 8ms 0.04 1000s ! 0.005
5ms 8ms 0.04 200s ! 0.023
5ms 4ms 0.07 1000s! 0.0097
5ms 4ms 0.07 200s' 0.040
5ms 2ms 0.10 1000s' 0.017*
5ms 2ms 0.10 200s~' 0.075
5ms 1ms 0.13 1000s~! 0.034
5ms 1ms 0.13 200s™' 0.130

20ms 2ms 0.20 1000s~* 0.028
20ms 2ms 0.20 200s™! 0.140%
1ms 2ms 0.06 1000s~! 0.012
1ms 2ms 0.06 200s~! 0.050

Table 1: Parameters used for integrate-and-fire simulations. As described in
the text, values of g;,; were chosen so that stimulus-induced correlations and
connectivity-induced correlations were similar magnitudes, and values of ge.;
were chosen to keep approximately constant mean firing rates. Simulations
with parameters flagged by T and i are shown in Figs. 7 and 8, respectively.
Parameters based on those flagged by * were used for the highly nonlinear

simulation shown in Fig. 10.
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10 spikes per second, typical neuronal firing rate in response to white noise.
For large §eq:, we set o = 200 s~ !, leading to an average input rate of nearly
80 inputs per second. Again, we adjusted g.,; so that the average firing rate
was between 5 and 10 spikes per second. The resulting parameter values
are given in Table 1. As an illustration of these conductance magnitudes,
when 7, = 5 ms and 7, = 2 ms, 18 nearly simultaneous inputs would bring
the voltage to threshold starting from the rest potential with the small ge,;.
With the large g..;, the voltage would reach threshold after only 4 inputs.

We simulated the neurons in response to 20 minutes of spatio-temporal
white noise, recording 6,000-12,000 spikes per neuron. We treated the spikes
as though they were generated by a linear-nonlinear system with an er-
ror function nonlinearity and computed the correlation measures described
above. Since saturation of firing plays little role with the low firing rates,
the selection of 7, (maximal firing rate) had little effect on the results. We
simply set 7, = 1 ms™" (ignoring the absolute refractory period of 2 ms).

The results from one example simulation are shown in Fig. 7. Given the
excitatory connection from neuron 2 to neuron 1 with a delay of A = 40 ms,
we would expect a positive covariance C after a delay of 40 ms. Indeed, Fig.
7b shows a peak centered around 50 ms. Moreover, since the kernel h, is
similar to the kernel h; delayed 40 ms (b = 0 and by = 40 ms), we would
expect a positive covariance around a delay of —40 ms. Such a peak is also
observed in Fig. 7b.

Ideally, the correlation measures S and W would act as SICMs also for
the integrate-and-fire neurons since the neurons are driven by the stimulus
similar to a linear-nonlinear system. To show that is not always the case,
we have started with our worst examples. As shown in Fig. 7c-d, & and W
remove some, but not all, of the stimulus-induced correlations. In fact, S
removes too much, developing a dip at the location of the stimulus-induced
peak in C. This dip is greatly reduced, but still perceptible, in W.

Another example in which § overcompensates for the stimulus-induced
correlation is shown in Fig. 8 Again, S develops a dip at the location
of the stimulus-induced peak in C. This time W virtually eliminates this
dip and essentially contains only the correlations induced by the excitatory
connection.

The examples shown in Figs. 7 and 8 were the two simulations in which
S and W performed most poorly. In some of the other simulations with
parameters from Table 1, & did develop a dip from the stimulus-induced
correlation, but in all cases it was smaller, within the confidence intervals
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Figure 7: Correlation measures for a pair of integrate-and-fire neurons where
neuron 2 has an excitatory connection onto neuron 1. Parameters are those
flagged by t in Table 1. Panels are as in Fig. 3, except units of C and &
are (spikes/second)?. (a) The inner product cos 6%, reaches 0.6 at a delay of
—40 ms due to similarity in the kernels h,. The peak around 50 ms is due
to modification of the kernels by the coupling. Similarly, the small peaks in
cos B, at absolute delays around 90 ms are due to the coupling. (b) The
covariance contains a peak centered around a delay of —40 ms, due to the
kernel similarity, in addition to the connectivity-induced peak around a delay
of 50 ms. (c) S overcompensates for the stimulus-induced peak, developing
a dip instead, and retains the connectivity-induced peak. (d) W greatly
reduces the stimulus-induced dip in S, containing mainly the peak reflecting
the excitatory connection from neuro§132 to neuron 1.
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Figure 8: Correlation measures for the pair of integrate-and-fire neurons with
parameters that are flagged by 1 in Table 1. Panels are as in Fig. 7. (a) The
kernel inner products are similar to those in Fig. 7. (b) The covariance shows
a stimulus-induced peak around a delay of —40 ms and a sharp connectivity-
induced peak just before 50 ms. (c) Asin Fig. 7, S shows a dip at the location
of the stimulus-induced correlation and retains the connectivity-induced cor-
relation. (d) W virtually eliminates the stimulus-induced correlation. The
correlation from the connectivity is retained, although a significant dip before
the peak develops.
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estimated from our 20 minute simulations. In each example, W virtually
eliminated any dip, although in a couple cases (with 7,,, = 8 ms and g;,; =
0.04) the connectivity-induced peak was barely above the confidence intervals
after the 20 minute simulations.

From these examples, it would appear that the correlation measure S
must be interpreted carefully since it frequently overcompensates for stimulus-
induced correlations. When & has the opposite sign of C, the correlation in
S may be only due to the common stimulus. The correlation measure W
does a much better job at eliminating stimulus-induced correlations.

In reality, the measure S should do better than indicated by these example
simulations. In these examples, we have been stressing the model by using
kernels h; and h, that are identical except for rotation. This choice gives
large inner products cos f; and large stimulus-induced correlations that must
be eliminated. In general, not only the orientation but also kernel properties
such as location, spatial phase, and spatial frequency would differ between
neurons. If the kernels differed in these properties, their inner products would
be smaller and the task of & and W would be easier.

As an example, we took the simulation with the worst results, shown
in Fig. 7, and simply changed the spatial phase of kernel 2. We let h, be
even-symmetric rather than odd-symmetric by changing the sine in Eq. (23)
to a cosine. Since this modification reduced the magnitude of the stimulus-
induced correlation, we reduced g.,; to 0.05 so that the connectivity-induced
correlation was reduced to a similar size.

The results are shown in Fig. 9. Both & and W completely eliminated the
stimulus-induced correlation evident in C. The proposed correlation measures
S and W behaved as SICMs just as they did for linear-nonlinear neurons.

We repeated this spatial phase modification for each of the 12 example
simulations. In each case, the measures & and W were close to SICMs,
virtually eliminating the correlations induced by the common stimulus with
only slight overcompensation by S in two cases. The main evidence of the
stimulus-induced correlations was a slightly increased variability in S. We
achieved similar results by altering the spatial frequency f for neuron 2.

We emphasize that the proposed SICMs S and W will work only when
a neuron is being driven like a linear-nonlinear system. When a neuron’s
response to the stimulus is more fundamentally nonlinear, the neuron cannot
be approximated as a linear-nonlinear system and the measures & and W
based on the linear-nonlinear model will not be SICMs.

As an example where the linear-nonlinear approximation breaks down,
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Figure 9: Correlation measures for a pair of integrate-and-fire neurons where
the spatial phase of neuron 2 differs from that of neuron 1. Parameters are as
in Fig. 7 except for the spatial phase of hy and ge,; = 0.05. Panels are as in
Fig. 7. (a) The inner product cos 6%, reaches only 0.3 because the different
spatial phases reduces the inner product. (b) Both the stimulus-induced
correlation and the connectivity-induced correlation are smaller than in Fig.
7. (c) S completely eliminates the stimulus-induced peak. (d) W likewise
has no stimulus-induced peak.
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we simulated a pair of neurons with input rates given by Eq. (27). We used
the simulation parameters marked by an asterisk in Table 1, only setting
at = 0.9 and o = 0.6. The results are shown in Fig. 10. Clearly, the
measures S and W are not SICMs as they still contain substantial peaks
due to the stimulus-induced correlations. They reduce the size of the peak
because the input rate still contains a linear component. If we set o™ = o™,
then § and W would not reduce the stimulus-induced correlations compared
to C.

4 Discussion

The above simulations demonstrate that the correlation measures S and
W remove stimulus-induced correlations when the neural responses can be
approximated by linear-nonlinear systems (Eq. (17)). With more realistic
neuron models, § and W may function as approximate SICMs provided that
the neurons are driven like a linear-nonlinear system.

The correlation measures S and W are not perfect SICMs with integrate-
and-fire neurons. When the inner product between the two kernels is large,
S overcompensates for the stimulus-induced correlations. This deficit in S is
mitigated by its signature of flipping the correlation sign so that the likely
presence of stimulus-induced correlation can be deduced. Since this over-
compensation appears to occur only when the two kernels are very similar,
it may not prove to be a problem in practice.

The second SICM W virtually eliminated the stimulus-induced correla-
tions in almost all cases. The reasons behind its better performance are not
completely clear since it is a linear function of S (Eq. (22)). Apparently,
only small changes in W are needed for Eq. (17) to adjust to approximate
the overcompensation observed in S.

Despite some discrepancies, the integrate-and-fire simulations demon-
strate that the applicability of the analysis is broader than linear-nonlinear
systems required by the derivation. The relative accuracy of & and W in
the integrate-and-fire simulations is significant because the integrate-and-fire
model differs from a linear-nonlinear in two important ways. First of all, the
model has more than one nonlinearity, better approximating biology. The
input (Eq. (26)) contains a thresholding nonlinearity and the spiking mech-
anism of the integrate-and-fire neuron is another nonlinearity. Second, the
integration of inputs and the refractory period imply that the firing proba-
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Figure 10: Correlation measures for a pair of integrate-and-fire neurons where
the input rates are fundamentally nonlinear functions of the stimulus. Pa-
rameters are those flagged by the * in Table 1 except that the input rates
are given by Eq. (27) with o™ = 0.9 and o = 0.6. Panels are as in Fig.
7. (a) The calculated inner products account for only the linear portion of
the response. (b) The covariance contains both stimulus-induced (at nega-
tive delays) and connectivity-induced components (at positive delays). (c)
S only slightly reduces the stimulus-induced correlation. (d) W reduces
the stimulus-induced correlation slightly more but still contains a significant
peak at negative delays.
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bility depends not only on the history of the stimulus but also the time of
the neuron’s previous spike. Fortunately, the low firing rate during white
noise experiments, which we replicated in our simulations, minimizes the ef-
fect of this departure from a linear-nonlinear system. This low firing rate
also minimizes the impact of our assumption (made solely for mathematical
convenience) that the effective nonlinearity was an error function.

W and S are valid only when the neuronal responses can be approximated
by linear-nonlinear systems. The integrate-and-fire simulations demonstrate
some robustness of these measures to deviations from the linear-nonlinear
model. The simulations also show that WW and S will not be SICMs when
the neurons respond to the stimulus in a fundamentally nonlinear fashion.
More careful analysis of the limitations of the method is needed so that one
can determine the applicability of the method from the measured spike times
alone.

The SICM W provides a useful normalization of the stimulus-independent
correlations. It translates the measured correlations into the same units as
the stimulus, possibly giving additional meaning to the measurements. When
the simulated neurons were linear-nonlinear systems, JV closely matched the
connectivity W both qualitatively and (assuming sufficient data were col-
lected) quantitatively.

One must exercise care in the interpretation of W, especially since its
formulation implies that it is measuring only correlations due to coupling
between the two neurons. In reality, it cannot distinguish coupling between
the measured neurons and other sources of correlation, such as correlations
caused by a shared connection with a third, unmeasured, neuron. The cor-
relation due to this common input can yield a qualitatively similar W} as the
correlations due to direct coupling [13]. Further analysis of coupled linear-
nonlinear systems is needed to make such a distinction.
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A Appendix: Formula for the SICM W

The derivation of the SICM W is given in Ref. [13]. Here, for completeness,
we simply write the formula for W in terms of the following measurable
statistics: the mean rate of neuron p (Rf,), the stimulus-spike correlation of
neuron p (XR;), and the correlation between the spikes of neuron 1 and
neuron 2 (R RE™).

Since, in matrix notation,

W=A"'S
(Eq. (22)), where
Al for j < 0,
AR =S (AR 4 AEDY /2 for j =0,
Akd for j > 0,

(Eq. (20)), we simply need the formula for A%,
Subject to the approximation described in section 2.2, A is given by

AIIZ = “2 [ﬁgg - ngqnzj;q + (COS Hﬁq cos eiq — CO8 egljj)”ﬁq“%q]’ (28)
where

(XR;*) - (XRy)
[(XR) (X 1)

cos Hﬁq =
(Eq. (16)), T, and 0, are defined by
iy = " orge (Ol
(R,) = 5 erfc( 2 )
(Eq. (12)) and

. ) 62T
(XRL)| = 222 exp (-2 )
(Eq. (13)), and the other parameters are defined by
Tpg = %’erfc (Ana/ v2)
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Hp = Jon exp(—épr /2)
7p0p exp(—%[)\ﬁqP)

k _

Hpq = 252 o2 Ok
\/27r(1 — 6262 cos? O )

o 6T, — (5,,(52Tq cos qu

pq

\/1 — 65(53 cos? 01’;(1
2 k—j 252 ' k

fkj _ 5p cos pr J— 5p5q coS 0{)(1 cos 9pq

pq

\/(1 — 6202 cos? ),)(1 — 6262 cos? 0% )

Recall that the double complementary error function is defined by

2 [ b—cy
derfc(a, b, ¢) = — eV erfc( )dy.
ﬁ/a V1-¢

(Eq. (7)) where

2 e
erfc(z) = ﬁ/ e " dt.

B Appendix: Calculation of confidence inter-
vals

B.1 Overview of the method

In order to determine the significance of nonzero correlation measures, one
must determine the likelihood of obtaining the observed value by chance even
if its expected value were zero. One way to provide a gauge on this likelihood
is to estimate the standard deviation of the measurement, computing the
standard error of the measured values. From these estimates, one can form
confidence intervals as a benchmark for significance.

Computing the standard error of basic measurements such as (R;) or
(RIRS7) is simple. One needs only to divide the data into M subgroups and
estimate the measurement for each subgroup. The standard error is simply
the standard deviation of their mean.
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To calculate the standard error of a nonlinear function (e.g., S) of the
basic measurements, one could compute all covariances of the basic measure-
ments (by taking the covariances of subgroup means). One could then use
error propagation techniques to estimate the standard error of the nonlinear
function. (One can derive typical error propagation methods by assuming
the covariances are small and linearizing the nonlinear function around the
measured values.)

However, we were unable to derive a suitable generalization of this ap-
proach that we could apply to W. First, for large kernels hj,, the computation
required to calculate the functions of the large number of covariances proved
to be unrealistically long. Second, and more importantly, we were unable to
find a suitable method to propagate the error through the matrix inversion
defining W. Estimates using matrix condition numbers proved to be gross
overestimates of the error since they are upper bounds independent of the
structure of the error.

Instead, we implemented a Monte Carlo calculation of the standard error.
We used this method for all confidence intervals shown in the figures. The
method involved calculating the means and covariance matrix (as described
above) of a set of base variables from which all statistics could be calculated.
We then sampled 50 joint Gaussian random variables with those means and
that covariance matrix. From each sample, we calculated the resulting cor-
relation measures (C, S, and W). We estimated the standard errors by the
standard deviations of these 50 estimates.

Note that this method does not require simulation of the neurons beyond
the simulation that generated the original data set. For this reason, it could
be used on data collected from real neurons. It is simply a method to calculate
error propagation without a formula.

The rest of this appendix gives technical details about the calculation,
including necessary slight modifications from the above outline.

B.2 The base variables

The correlation measures C, S, and W are functions of the measured mean
rate of neuron p (R}), stimulus-spike correlation of neuron p (XR}), and
correlation between the spikes of neuron 1 and neuron 2 (R: Ry *). In prac-
tice, we actually measure (X|R} = 1) = (XR})/(R}) rather than (XR}) as
described in Ref. [14].
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We could compute the covariances of all these values and base our Monte
Carlo simulation on those values, but that would lead to an unmanageably
large covariance matrix. The statistics (X|R}, = 1) are used only in the form
(X|R, = 1) - (X|R.* = 1) (for [(XR.)|* and cos 6f,). We greatly reduce the
number of base variables by using only the inner products of (X|R) = 1)
rather than their individual components. If we calculate the statistics for
delays k = —N,... N (2N + 1 delays), then the 6N + 6 base variables are

e (R!) and (R%) (2 variables),
o (RIRLF) for k= —N,...,N (2N + 1 variables),

o (X|R, = 1) - (X|R;* =1) forp =1,2and k = 0,...,N (2N + 2
variables), and

o (X|R: =1)-(X|Ri*=1)for k=—N,..., N (2N + 1 variables).

Recall that each statistic is independent of time point ¢ since the stimulus
and the neural response are stationary.

We divide the data into M equal subgroups and estimate each base vari-
able for each subgroup. We use these estimates to calculate the covariance
matrix of the base variables as described above. Since the kernel inner prod-
ucts are inner products of averages (rather than averages of inner products),
we make an error by not calculating the covariances of each (XR;) individu-
ally. To minimize this error, we make the subgroups large, using only M = 4
subgroups.

B.3 Generating the joint normals

One standard method to generate joint normals Y with mean zero and co-
variance matrix B is to first compute the Cholesky decomposition L of the
matrix B

B=LL" (29)

where L is a lower triangular matrix. Then generate a vector Z of indepen-
dent standard normal random variables (with mean 0 and standard deviation
1). The variables

Y =1Z (30)
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have the covariance matrix B.

A covariance matrix B is guaranteed to be symmetric and positive semi-
definite if it were computed with 100% accuracy. However, representing the
matrix on a computer implies the computer version can be accurate only
within machine precision. If, as in the present case, some of the variables
are highly correlated, numerical error in the covariance matrix could lead to
negative eigenvalues. (Two perfectly correlated variables would create a zero
eigenvalue, so highly correlated variables lead to small eigenvalues. If they
are sufficiently small, numerical error could turn them negative.)

Since Cholesky decomposition fails if any eigenvalues are negative, a
straightforward attempt to generate random variables with our covariance
matrix B will fail. To ensure that the covariance matrix is positive definite,
we perturb the matrix slightly in the following manner.

First, we normalize the covariance matrix B into a matrix of correlation
coefficients (call it the correlation matrix D). We store the standard deviation
of each base variable (the square root of the diagonal of B) and divide each
row and column by the standard deviation. This leads to a matrix D with
ones on the diagonals and all off-diagonals less than one in magnitude. (Many
of the off-diagonals are nearly one, which is the source of the problem.)

Next, we decompose D into eigenvectors and corresponding eigenvalues.
We set an eigenvalue cutoff around 10 !* times the maximal eigenvalue. If
any eigenvalues are less than that cutoff, we set them equal to the cutoff.
In this way, we ensure that the minimal eigenvalue is no less than the cutoff
(hence positive).

We reconstruct D from its eigenvectors and modified eigenvalues. Since
D is now positive definite, we can compute its Cholesky decomposition
D = LLT and generate random variables Y = LZ with covariances given
by D. We multiply each component of Y by the standard deviation of the
corresponding base variable and add its mean (the original value of the base
variable). The random variables Y then have the expected value and covari-
ance matrix calculated from the base variables.

B.4 Computing a linear approximation

The nonlinear calculation of W can fail if the base variables do not correspond
to values achievable by the model of Eq. (17) (the calculation may take a
square root of a negative number or the matrix A may become singular).
For this reason, computing W using the random variables Y for the base
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variables sometimes fails or nearly fails (leading to arbitrarily large values of

To avoid this problem, we look for a linear approximation of the error
around the originally measured values of the base variables. Since we are
not computing formulas, we can’t explicitly linearize the nonlinearities as is
done in typical error propagation. Instead, we simply make the deviations
from the original base variables smaller.

We divide the standard deviations of the base variables by 10 before
multiplying Y by them in the above procedure. The random variables still
have the same correlation structure as before, only their variation around
the original base variables is 10 times smaller. Since they are so close to the
original base variables, the calculation of W is unlikely to fail.

We compute estimates of C, &, and W from each sample of Y. Our
estimate of the standard error is simply the standard deviation of these es-
timates multiplied by 10. In this way, the error estimates are based on the
behavior of C, §, and W near the original values of the base variables. We’ve
effectively computed error measures based on a linearization around those
base values.
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