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Abstract We present an analysis of interactions among neurons in stimulus-driven
networks that is designed to control for effects from unmeasured neurons. This work
builds on previous connectivity analyses that assumed connectivity strength to be
constant with respect to the stimulus. Since unmeasured neuron activity can modu-
late with the stimulus, the effective strength of common input connections from such
hidden neurons can also modulate with the stimulus. By explicitly accounting for the
resulting stimulus-dependence of effective interactions among measured neurons, we
are able to remove ambiguity in the classification of causal interactions that resulted
from classification errors in the previous analyses. In this way, we can more reliably
distinguish causal connections among measured neurons from common input connec-
tions that arise from hidden network nodes. The approach is derived in a general
mathematical framework that can be applied to other types of networks. We illustrate
the effects of stimulus-dependent connectivity estimates with simulations of neurons
responding to a visual stimulus.

Keywords Neural networks · Correlations · Causality · Penalized likelihood
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1 Introduction

We have recently developed a framework for estimating the connectivity among nodes
in a network [12–15]. The key feature of this approach is its ability to control for
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148 D. Q. Nykamp

the effects of connections from hidden nodes. Because of the hidden nodes, we
frame our goal in terms of identifying causal connections among measured nodes.
A causal connection is a direct connection between measured nodes or an indirect
connection consisting of a chain of connections via hidden nodes through which
one measured node influences the other. We do not attempt to distinguish a direct
connection from an indirect connection but refer to either as simply a causal connec-
tion.

The presence of hidden nodes can corrupt estimates of causal connections among the
measured nodes. For example, if two measured nodes receive common input connec-
tions from a hidden node, the activity of those nodes may be correlated in a way that
mimics a causal connection, even though neither measured node causally influences
the other. We were able to successfully distinguish between causal connections and
such unmeasured common input. However, the success relied on making assumptions
about the hidden nodes [13,14].

The most significant assumption was about the relationship between the activity of
the hidden nodes and the measured external variables, such as a stimulus. Since by
definition, we have no data from the hidden nodes, we cannot determine any of their
properties. It turns out that we need not estimate many of these properties, such as
how the activity of a hidden node is influenced by its own history. However, in the
analysis to determine network connectivity, we obtain equations containing factors
representing the relationship between the stimulus and the activity of hidden nodes. In
previous work, we effectively ignored [13,14] any such relationship in order to solve
for common input from hidden nodes.

Despite such a seemingly drastic assumption, the method worked surprisingly well.
The analysis was able to accurately distinguish common input from causal connection
as long as the hidden common input nodes responded differently to the stimulus than
did the measured nodes. If a hidden common input node happened to respond to the
stimulus in a similar manner, then this common input might be misidentified as a
causal connection between the measured nodes. Since one cannot verify the presence
or absence of such a similar common input node, the results contain a degree of
ambiguity in the identification of causal connections. We will illustrate this ambiguity
more precisely in the context of simulation results (see Sect. 3).

In this paper, we demonstrate that one can eliminate this ambiguity if one repeats
a stimulus many times and allows the connectivity strength to vary in time with the
stimulus. In Sect. 2, we develop the analysis underlying these stimulus-dependent
connectivity measures. In Sect. 3, we test the results with simulations of neurons
responding to a visual stimulus, and we discuss the results in Sect. 4.

2 The analysis

2.1 The model used in the analysis

Since we are interested in the case where a stimulus is repeated many times, we can
avoid postulating a model of how nodes respond to the stimulus. Instead, we use
history and histogram (HAH) models [15] that allow an arbitrary dependence of node
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Stimulus-dependent connectivity 149

activity on stimulus time (though not on stimulus repeat). Our primary application of
these methods is in neuroscience, and we use the name HAH because the model can
be viewed as based on a neuron’s peristimulus time histogram (PSTH) combined with
the dependence of the neuron’s activity on its own spiking history.

Let Rk,i
s be the activity of node s at stimulus time i (we use discrete time) and repeat

k. Eventually, we will let Rk,i
s be a Bernoulli random variable indicating the presence

or absence of a spike of a neuron in that time bin. For now, we will not specify the
probability distribution as the analysis applies to more general networks, allowing the
activity of a node be a continuous or discrete random variable. (For simplicity, we use
the notation of a discrete random variable.)

We allow the probability distribution of Rk,i
s to depend in an arbitrary manner on

stimulus time i . In addition, it could depend on the activity of all (measured and hidden)
nodes for all times before i during stimulus repeat k, which we denote by1 Rk,<i . We
separate out the history of node s itself, which we denote by the vector Rk,<i

s . At this
point, we will allow an arbitrary dependence on the node’s own history but assume
that inter-nodal coupling adds linearly. The resulting HAH model for the probability
distribution of the activity of node s can be written as

Pr(Rk,i
s = rk,i

s | Rk,<i = rk,<i ) = P̄s

⎛
⎝rk,i

s ; i, rk,<i
s ,

∑
s̃ �=s

∑
j>0

W̄ j,i
s̃,s rk,i− j

s̃

⎞
⎠ , (1)

where P̄s is a probability distribution in its first argument. The remaining three argu-
ments determine how Rk,i

s depends on stimulus time, the history of node s, and the
total coupling from all other nodes. To implement this approach, we will need to spe-
cify how these arguments influence the probability distribution; for now, we leave the
formulation generic.

Note that the coupling kernel W̄ j,i
s̃,s is allowed to depend not only on delay j but also

on stimulus time point i . W̄ j,i
s̃,s determines how the activity of node s at stimulus time

i is influenced by the activity of node s̃ from j time steps previous. We have assumed
that the coupling strength is independent of stimulus repeat. We refer to this variable
connectivity strength as stimulus-dependent connectivity.

We assume that the activity of each node was given by an equation of the form (1).
Since in this model, all interactions among nodes are delayed by at least one time step,
the random variables for the activity of all nodes in a single time step are independent,
conditioned on the stimulus and the history of all nodes. Hence, we can repeatedly use
Bayes’ rule to expand the probability distribution of the activity of all nodes, denoted
R, into factors of the form of (1). The result is

1 If the stimulus is repeated with no break in between presentations, we can allow Rk,i
s to depend on the Rk̃,ı̃

s̃
for previous stimulus repeats k̃ < k. However, for simplicity of notation, we ignore any such “wrapping”
of the time from the end of one stimulus repeat to the beginning of the next.
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Pr(R = r) =
∏
s,k,i

Pr(Rk,i
s = rk,i

s | Rk,<i = rk,<i )

=
∏
s,k,i

P̄s

⎛
⎝rk,i

s ; i, rk,<i
s ,

∑
s̃ �=s

∑
j>0

W̄ j,i
s̃,s rk,i− j

s̃

⎞
⎠ . (2)

In the following analysis, we assume that the activity of all nodes was generated by (2).

2.2 Sketch of the analysis

Our goal is to use (2) to estimate the connectivity W̄ among measured nodes in the
network. The only data we have at our disposal is the stimulus and the activity of
measured nodes, which we denote by RQ = {Rk,i

q | q ∈ Q}, where Q is the set of
indices corresponding to measured nodes. However, the R of (2) also includes the
activity of hidden nodes, which we denote by RP = {Rk,i

p | p ∈ P}, where P is the
set of indices corresponding to hidden nodes. Clearly, we cannot hope to determine
the parameters of (2), as it is underconstrained by the available data.

Our strategy to estimate connectivity is to average out the activity of hidden nodes
from (2) and fit the resulting equation to the activity of the measured nodes. In other
words, we marginalize the full probability Pr(R) to just the probability distribution
Pr(RQ) of measured nodes.

The analysis follows that of Ref. [14], so we just briefly summarize the steps here.
We assume that the coupling W̄ is weak (i.e., the W̄ j,i

s̃, are small parameters) so that we

can expand (2) into a second-order Taylor series in the W̄ j,i
s̃, . Each term of the resulting

expression is simply a polynomial in the r i
s times the probability distributions P̄s (or

derivatives of the P̄s). Since each term is so simple, we can analytically compute the
averages over any of the r i

s . In other words, we can derive an analytic expression for
the marginal probability distribution Pr(RQ) in terms of the quantities from (2).

To write the probability distribution Pr(RQ) in terms of known parameters, we mar-
ginalize (2) over the activity of all nodes except one. Hence, we obtain an expression
for Pr(Rs), the probability distribution for the activity Rs of node s.

Note that the probability distributions in (2) have a bar over them. This bar indicates
that these are the original probability distributions that we assume generated the activity
of the nodes. We cannot determine those probability distributions as they depend on
the hidden variables of the hidden nodes. We can, however, separately fit effective
probability distributions to the activity Rs of each measured node, which we write
without a bar,

Pr(Rs = rs) =
∏
k,i

Ps

(
rk,i

s ; i, rk,<i
s , 0

)
. (3)

When fitting the effective probability distributions (3), we ignore the fact that the
nodal activity Rs depends on the activity of other nodes due to coupling (this is just
a restatement of the fact that the left hand size of (3) is the marginal distribution of
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Rs). To reflect the assumption in this fit, we let the coupling argument be zero at this
stage. Since the activity Rs used to fit the effective probability distributions (3) were
influenced by the coupling, (3) includes the average effect of the coupling. (Fitting a
model to the activity of just one node corresponds to effectively averaging over the
activity of the other nodes.) Hence, when we reintroduce coupling terms back into
(3), below, such coupling terms will reflect deviations from the average effect of the
coupling.

The assumptions on the Ps required for the analysis are detailed in Ref. [14].
The main assumptions are that the underlying model is identifiable (meaning we can
determine all parameters from measurements of Rs and the stimulus) and that the
coupling argument is chosen so that we can determine Ps(r

k,i
s ; i, rk,<i

s , w) for any w
once we fit model (3) from Rs alone.

By equating (3) to the marginalization of (2) for Pr(Rs), we derive an expression for
the original probability distributions P̄s in terms of the effective probability distribution
Ps . Then, we can rewrite our expression for the probability distribution Pr(RQ) for
measured activity RQ in terms of the effective probability distributions. We end up
with the equation2

Pr(RQ = rQ) ≈
∏
q∈Q

∏
k,i

Pq

⎛
⎜⎜⎝rk,i

q ; i, rk,<i
q ,

∑
q̃∈Q
q̃ �=q

∑
j>0

W j,i
q̃,q

[
rk,i− j

q̃ − E0(R
k,i− j
q̃ )

]

+
∑
q̃∈Q
q̃ �=q

∑
j>0

U j,i
q̃,q

∂Pk,i− j
q̃

∂w

1

Pk,i− j
q̃

⎞
⎟⎟⎠ . (4)

Model (4) is in the same form as the original network equations (2) except that it is
in terms of the measured node activity RQ, the effective models (3), and additional
quantities which we now define.

We define the effective expected value E0(·) to be the expected value given the
effective model (3). Given any function g(Rs) of the activity Rs of node s, we define

E0(g(Rs)) =
∑
rs

g(rs)
∏
k,i

Ps

(
rk,i

s ; i, rk,<i
s , 0

)
, (5)

where the sum is over all possible values of the activity rs of node s. In particular
E0(R

k,i
s ) is equal to the expected value of the activity of node s at stimulus time point

i . (By assumption, it is independent of stimulus repeat k.) Recall that we assume the
stimulus is repeated many time. Hence, if Rs indicates the spiking activity of neuron
s, then E0(R

k,i
s ) is proportional to the PSTH of neuron s at stimulus time point i ,

2 C.f. Eqs. (3.10a) and (3.13) of Ref. [14]. Note that we have ignored terms quadratic in W to facilitate
computations.
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assuming that model (3) adequately captures the average activity of neuron s. We also
use the shorthand notation

Pk,i
s = Ps

(
rk,i

s ; i, rk,<i
s , 0

)
,

(6)
∂Pk,i

s

∂w
= ∂

∂w
Ps

(
rk,i

s ; i, rk,<i
s , w

)∣∣∣∣
w=0

.

to represent the effective model (3) and its derivative.
Equation (4) contains two new effective connectivity terms. The first is W j,i

q̃,q , which
is the effective causal connection onto measured node q at stimulus time i coming
from the activity of measured node q̃ that occurred j time steps previous. It includes
not only the direct connection W̄ j,i

q̃,q , but also indirect connections from node q̃ onto
node q through an intermediate hidden node p. (Since we used a second-order Taylor
approximation, we do not directly account for chains of connections longer than two.)
In terms of the original connectivity, W can be written as

W j,i
q̃,q = W̄ j,i

q̃,q +
∑
p∈P

∑
j̃1,j̃2

j>j̃1≥j̃2>0

W̄ j−j̃1,i−j̃1
q̃,p Ci−j̃1,i−j̃2

p W̄ j̃2,i
p,q (7)

where Ci−j̃1,i−j̃2
p is an expression involving the model of hidden node p; it indicates the

influence of an input at stimulus time i − j̃1 on its spiking probability at stimulus time
i−j̃2 (of the same stimulus repeat). Clearly, we cannot determine any of the parameters
of the sum in W j,i

q̃,q ; our goal is only to compute the effective causal connection W j,i
q̃,q .

The second connectivity term is U j,i
q̃,q , which is the effective common input from

hidden nodes that reaches measured node q at stimulus time i and reaches measured
node q̃ at the time j steps previous. In terms of the original connectivity, U can be
written

U j,i
q̃,q =

∑
p∈P

∑
j̃1,j̃2

j̃1>0,j̃2> j

W̄ j̃1,i
p,q W̄ j̃2− j,i− j

p,q̃

[
E0(R

k,i−j̃1
p Rk,i−j̃2

p )

−E0 (R
k,i−j̃1
p )E0(R

k,i−j̃2
p )

]
. (8)

The bracketed expression is the covariance between the activity of hidden node p at
stimulus times i − j̃1 and i − j̃2. (Recall the effective expected values do not depend
on stimulus repeat k.) Again, we cannot determine the individual quantities in the sum
defining U j,i

q̃,q , but seek only to determine the total effective common input U j,i
q̃,q .

A key point is that once we fit effective models (3) to each of the measured nodes,
the only unknown factors in (4) are the effective connectivity factors W and U .
All other quantities are functions of the effective models of measured nodes. All
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quantities involving hidden nodes parameters are contained within the factors W and
U as specified in Eqs. (7) and (8).

2.3 Avoiding additional ambiguity

The above analysis parallels that of Ref. [14]. However, since the analysis of Ref. [14]
did not exploit stimulus repeats, it could not allow W and U to depend on time points
(otherwise, there would have more unknowns than data points). In Ref. [14], W j,i

q̃,q and

U j,i
q̃,q were allowed to be functions only of delay j and not of time point i .

Note from Eqs. (7) and (8) that the effective coupling terms W j,i
q̃,q and U j,i

q̃,q will still

depend on stimulus time point i even if the original coupling terms W̄ j,i
q̃,q and Ū j,i

q̃,q were
independent of i . Both Eqs. (7) and (8) contain factors involving hidden node activity
that depend explicitly on i . Hence, the approximation made in Ref. [14] neglects
how hidden node activity can depend on the stimulus. As discussed in Ref. [14], this
approximation leads to some ambiguity in the identification of causal connections.
We will return to this ambiguity when demonstrating the results of our new method
in Sect. 3. In this paper, we develop a modification to remove this ambiguity for the
case when a short stimulus is repeated many times.

The essential change from the analysis of Ref. [14] was already made in the pre-
vious subsection: we allowed the connectivity strength to depend on the stimulus time
point but not on the stimulus repeat. If we have many stimulus repeats, then we can
allow W j,i

q̃,q and U j,i
q̃,q to depend on both stimulus time point i as well as the delay j . We

do not need to make any additional assumptions about the hidden nodes that introduce
ambiguity in the identification of the causal connections.

By allowing the coupling terms to depend on stimulus time point, we have greatly
increased the number of unknown parameters we must determine. To allow for trac-
table computations with feasible amounts of data, we reduce the degrees of freedom
by splining. We expect that the connectivity terms could depend on the delay j with
a fine temporal resolution, since that captures the relative timing between the activity
of the nodes. However, we expect the dependence on absolute stimulus time point to
change much more slowly, on a time scale determined by the temporal structure of
the stimulus. Consequently, we approximate W j,i

q̃,q and U j,i
q̃,q with quadratic splines in

delay j using a fine grid spacing of∆td and with linear splines in stimulus time point
i using a larger grid spacing of ∆ts .

In previous approaches, we used the logarithm of (4) to compute maximum likeli-
hood estimates of W and U . Since allowing stimulus-dependent connectivity greatly
increases the number of unknowns, maximum likelihood estimates would be prone to
overfit the data. To avoid this, we penalize the likelihood in two ways. First, we use the
standard procedure of penalizing large values of any of the spline coefficients for W
and U .3 Second, we penalize large deviations of W j,i

q,q̃ or U j,i
q,q̃ with respect to stimulus

3 We subtract from the logarithm of (4) the sum of the squares of the spline coefficients, multiplied by a
factor λ1 = 0.001.
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time point i .4 In the end, we calculate maximum a posteriori (MAP) estimates of W
and U using the resulting penalized log-likelihood.

3 Tests via neuronal network simulations

To test the performance of this approach, we simulated small networks of neurons with
known circuitry and tested how well we could reconstruct the connections. We simu-
lated networks with both direct connections and common input connections in order
determine under what conditions allowing stimulus-dependent connectivity improved
our connectivity estimates.

3.1 The format of the tests

3.1.1 The simulated networks

Our primary goal is to determine under which conditions we can distinguish between
causal connections and common input connections. For simplicity, our causal connec-
tion network consisted of two neurons where neuron 2 had a direct connection onto
neuron 1. Our common input network consisted of three neurons where neuron 3 was
connected to both neurons 1 and 2; in the analysis, the spikes of neuron 3 were ignored
so that it was an unmeasured neuron.

We let the response Rk,i
s of neuron s be a Bernoulli random variable where Rk,i

s = 1
corresponds to the presence of a spike in time bin i during stimulus repeat k. We used
time bins of width ∆t = 0.5 ms. We let Xi represent a 2D visual stimulus at time i
and simulated the network activity as generalized linear models (GLMs) of the form

Pr(Rk,i
s = 1 | Rk,<i = rk,<i )

= Ās

⎡
⎣∑

j>0

⎛
⎝h̄ j

1,s · Xi− j + h̄ j
2,srk,i− j

s +
∑
s̃ �=s

W̄ j
s̃,srk,i− j

s̃

⎞
⎠ + ȳs

⎤
⎦

2

+
(9)

where [y]+ = max(y, 0). The threshold quadratic nonlinearity for each neuron was
determined by a gain parameter Ās and offset parameter ȳs . (We truncated to 1 any
values of the probability that exceeded 1.)

Our GLM model had three sets of linear kernels. The first kernels h̄ j
1,s specified how

the neurons responded to the stimulus. We used Gabor functions in space multiplied
by an alpha function in time. At each position z = (z1, z2) and delay of j, the kernel
h̄ j

1,s was proportional to

4 For each node pair and delay index, we calculate the difference between each pair of spline coefficients
with adjacent stimulus time indices. Then, we subtract from the logarithm of (4) the sum of the squares of
these differences, multiplied by a factor λ2 = 0.1.

123



Stimulus-dependent connectivity 155

h̄ j
1,s(z) ∝ j exp

(
− j∆t

τ stim
s

− |z − z0|2
2σ 2

s

)
cos(ks · (z − z0)+ φs) (10)

with ks = 2π(cosψs, sinψs) fs . The constant of proportionality was chosen so that∑
j h̄ j

1,s · Xi− j had unit variance. The offset z0 was chosen to center the kernel on the
stimulus (z0 = (N0, N0)/2, where N0 was the length of one side of the visual image
as described below).

The second kernels h̄ j
2,s specified how each neuron was influenced by its own

spiking history. We included an absolute refractory period of length τ ref
s by setting

h̄ j
2,s = −100 for j∆t ≤ τ ref

s , which insured that Pr(Rk,i
s = 1)was zero for an interval

of τ ref
s after each spike. After the absolute refractory period, we included a relative

refractory period by setting

h̄ j
2,s = −ase− j∆t/τ hist

s for j∆t > τ ref
s . (11)

The third kernels W̄ j
s̃,s specified the connectivity. We used the form

W̄ j
s̃,s = bs̃,s

j∆t − ds̃,s

τ 2
w

exp

(
− j∆t − ds̃,s

τw

)

for j∆t > ds̃,s and W̄ j
s̃,s = 0 otherwise. The alpha function form of W̄ j

s̃,s could be
viewed as reflecting the time course of postsynaptic potential in neuron s in response to
an input from neuron s̃. The parameter ds̃,s represented the delay and bs̃,s the strength
of the connection. For all connections, we set the time scale to τw = 0.5 ms. Note that
we did not let the coupling strength W̄ depend explicitly on time.

3.1.2 The stimulus

In the first set of experiments, we stimulated the networks with a simple stimulus: a
grating drifting at 10 Hz. We let the stimulus at position z = (z1, z2) and time bin i be

Xi (z) = cos(2π(k · z + ωi∆t)),

where ω = 0.01 ms−1 and k = 0.033(cosπ/4, sin π/4). We recorded spikes from
the neurons for 10 simulated minutes. We adjusted the nonlinearity parameters Ās and
ȳs so that each neuron spiked between 15 and 20 Hz, obtaining between 9,000 and
12,000 spikes per neuron.

In the second set of experiments, we stimulated the networks with a five second
movie consisting of a sequence of sinusoidal gratings. For a given grating Ik with
wave vector k = (k1, k2), the image at position z = (z1, z2) was I k(z) = cas(2πk ·
z/N0) where cas x = cos x + sin x and N0 = 100 was the length of one side of the
image (0 ≤ z1, z2 ≤ N0 − 1). Every 50 simulated milliseconds, a new image was
selected, with replacement, from the set composed of the Ik and −Ik, for k1, k2 ∈
{−5,−4, . . . , 4, 5}. We repeated this movie for one simulated hour. We adjusted the
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nonlinearity parameters Ās and ȳs so that each neuron spiked around 10 Hz, obtaining
around 35,000–38,000 spikes per neuron.

3.1.3 The HAH models used to estimate connectivity

The first step in determining the connectivity is fitting an effective probability distri-
bution (3) to the spikes of each measured neuron. We do not attempt to reconstruct
the GLM models (9) that were used in the simulations. (Neither the drifting grating
stimulus nor the short five second movie sampled the stimulus space sufficiently well
to obtain good estimates of the kernels h̄1,s .) Instead, we fit HAH models of the GLM
form5

Pr(Rk,i
s = 1 | Rk,<i

s = rk,<i
s ) = Ps

(
1; i, rk,<i

s , 0
)

= gs

⎛
⎝Pi

s +
∑
j>0

h j
s rk,i− j

s

⎞
⎠

(12)

where gs(y) = As log(1 + exp(y + y0)). The procedure for fitting the parameters is
described in the Appendix.

After we have determined all parameters for the effective models of all measured
neurons, we use (4) to fit the effective causal connection parameters W j,i and effective
common input parameters U j,i , where we simply add the coupling term underneath
the nonlinearity, using

Ps

(
1; i, rk,<i

s , w
)

= gs

⎛
⎝Pi

s +
∑
j>0

h j
s rk,i− j

s + csw

⎞
⎠ . (13)

See the Appendix for how we determined the scaling parameter cs .
Recall that we splined the W j,i and the U j,i to reduce degrees of freedom. We used

a fine grid spacing of∆td = 2 ms for the splines in delay j . For the splines in stimulus
time point i , we used the grid spacing ∆ts = 10 ms for the drifting grating stimulus
and the grid spacing ∆ts = 50 ms for the random grating stimulus.

Since in all the examples, we will have only two measured neurons, we combine
for display purposes the connectivity parameters as

W j,i =

⎧⎪⎪⎨
⎪⎪⎩

W − j,i
12 for j < 0,

0 for j = 0,

W j,i
21 for j > 0,

5 Since Rk,i
s is a Bernoulli random variable, it is clear that the probability that Rk,i

s is zero is

Ps

(
0; i, rk,<i

s , 0
)

= 1 − Ps

(
1; i, rk,<i

s , 0
)

.
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U j,i =

⎧⎪⎪⎨
⎪⎪⎩

U− j,i
12 for j < 0,

0 for j = 0,

U j,i
21 for j > 0.

(14)

so that connections from neuron 2 onto neuron 1 would be observed at positive delays
and connections from neuron 1 onto neuron 2 would be observed at negative delays.

To further facilitate display of the results, we will also graph the average W and U
across all stimulus time points

W j
ave = 1

Nt

Nt∑
i=1

W j,i and U j
ave = 1

Nt

Nt∑
i=1

U j,i , (15)

where Nt is the number of time points in the stimulus.
Lastly, we are interested in comparing results based on stimulus-dependent connec-

tivity with those based on fixed connectivity strength as in Ref. [14]. To calculate these
latter estimates, we use (4) with (13) to obtain maximum likelihood estimates of the
parameters W j

q̃,q and U j
q̃,q that are not allowed to depend on stimulus time i . We denote

these constant connectivity estimates of the connectivity between neurons 1 and 2 as
W j

const and U j
const. We will compare W j

ave and U j
ave with W j

const and U j
const to assess the

performance of the stimulus-dependent connectivity estimates.

3.2 Result with drifting grating stimulus

In the first set of experiments, we used a drifting grating stimulus to stimulate both
a network with a direct connection and a network with a common input connection
from an unmeasured neuron. In the direct connection network, neuron 2 had a direct
connection onto neuron 1. In the common input network, an unmeasured neuron had a
connection onto both neurons 1 and 2, and the connection onto neuron 1 had a longer
delay. With this delay, the spikes of neuron 1 were correlated with a delayed version
of the spikes of neuron 2, mimicking the direct connection network.

To demonstrate this correlation, we plot the joint peristimulus time histogram
(JPSTH) [1,20] for these two networks in Fig. 1a, b. In our notation, the JPSTH
can be written as 〈Rk,i1

1 Rk,i2
2 〉 − 〈Rk,i1

1 〉〈Rk,i2
2 〉 where 〈·〉 indicates average over sti-

mulus repeats. Note that in both cases, the JPSTH has large values (indicated by light
color) just below the diagonal, indicating the correlation between neuron 1’s spikes
and a delayed version of neuron 2’s spikes. The JPSTHs do not distinguish between
the direct connection network (Fig. 1a) and the common input network (Fig. 1b).

To distinguish between the direct connection network and the common input net-
work, we calculate our causal connection factor W and common input factor U , as
described above. The results are shown in Fig. 2a, b. For comparison, we also replot
each JPSTH using the delay j and stimulus time i convention that we used for W j,i and
U j,i in (14). In the direct connection network of Fig. 2a, we see a band of large JPSTH
values (light color) around the delay of j = 5 ms, corresponding to the delay of the
direct connection. A similar band of large values at delay j = 5 ms is also visible in
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Fig. 1 JPSTHs calculated from networks driven by a drifting grating. The x-axis indicates the time of a
spike in neuron 1 relative to the stimulus, and the y-axis indicates the time of a spike in neuron 2 relative to
the stimulus. For each network, the JPSTH has large values just below the diagonal, indicating that neuron
1’s spikes are correlated with a delayed version of neuron 2’s spikes. The JPSTH does not distinguish
between the different networks. a A network where neuron 2 is connected to neuron 1, as schematized by
the top diagram. Simulation parameters: Ā1 = 0.06, Ā2 = 0.05, ȳ1 = ȳ2 = −0.18, σ1 = 15, σ2 = 10,
ψ1 = 0, ψ2 = π/4, f1 = 0.4/σ1, f2 = 0.5/σ2, φ1 = 0, φ2 = π , τ stim

1 = τ stim
2 = 40 ms, τ ref

1 = 2 ms,

τ ref
2 = 1 ms, τhist

1 = 15 ms, τhist
2 = 20 ms, a1 = 4, a2 = 3, d2,1 = 4 ms, b2,1 = 2, and all other bs̃,s = 0.

b A network where an unmeasured neuron has a common input connection onto both neurons 1 and 2, with
a longer delay to neuron 1. Simulation parameters as in a. Exceptions and additional parameters (index 3
refers to unmeasured neuron): A3 = 0.06, ȳ1 = −0.13, ȳ2 = −0.14, ȳ3 = −0.15, σ3 = 20, ψ3 = π/2,
f3 = 0.3/σ3, φ3 = 3π/2, τ stim

3 = 40 ms, τ ref
3 = 1.5 ms, τhist

3 = 25 ms, a3 = 2, d3,1 = 5 ms, d3,2 = 0
ms, b3,1 = b3,2 = 7, and all other bs̃,s = 0. c Another network with common input connections onto
neurons 1 and 2. The only difference from the network in b is that the unmeasured neuron responds to
similar stimulus features as does neuron 2, as indicated by the identical shading of both neurons in the top
diagram. (Simulation parameters as in b except that φ3 = 1.2π .) In all three panels, the color scale as shown
at the far right ranges from −c = −0.0002 up to c = 0.0002. JPSTHs were smoothed with a Gaussian
filter with standard deviation of 1 ms. Note that in order to facilitate comparison with Fig. 2, we set to zero
all values of each JPSTH where the stimulus times differ by more than 20 ms, modulo the stimulus period
of 100 ms. (There was no structure in the JPSTHs outside the region that is shown)

the causal connection factor W j,i but not in the common input factor U j,i , indicating
that the correlation was due to a causal connection from neuron 2 onto neuron 1.
Conversely, in the common input network of Fig. 2b, U j,i , but not W j,i , has a band of
large values around the delay j = 5 ms, correctly indicating that the correlation obser-
ved in the JPSTH was not due to a causal connection between the measured neurons,
but rather arises from common input that originates from an unmeasured neuron.

Note, however, that the estimates of W and U do not appear as clean as the JPSTHs.
In Fig. 2a, for example, there is a region around delay j = −8 ms6 and stimulus time
70 ms where the values of W j,i are even larger than those along the j = 5 ms band.
Given that the JPSTH contains no structure in that region, one may suspect that those
large values of W may be due to noise rather than indicating connectivity. (Indeed, we
know it is unrelated to the connectivity since we know the underlying network.) Such
noisy behavior of W and U is a consequence of allowing the connectivity parameters to
depend on stimulus time, greatly increasing the degrees of freedom in our connectivity
measures.

6 A delay of j = −8 ms corresponds to neuron 2 firing 8 ms after neuron 1.
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Fig. 2 Determination of the connectivity patterns underlying the correlations shown in Fig. 1. Network
diagrams are repeated from Fig. 1. In the top panels, the JPSTHs of Fig. 1 are replotted using the delay j
and stimulus time i convention that we used for W j,i and U j,i in (14). The W j,i and U j,i are shown in the
middle and bottom panels, respectively. For all networks, the JPSTH indicates that the spikes of neuron 1
are correlated with the spikes of neuron 2 delayed by about 5 ms. For JPSTH plots, the color scale (see far
right) ranges from −c = −0.0002 up to c = 0.0002. a Since W j,i , but not U j,i , has a band of large values
around the delay j = 5 ms, the results are evidence that the correlations were due to a causal connection
from neuron 2 onto neuron 1. However, especially since W and U are also large at other points, this raw
data is difficult to interpret. For W and U , the color scale ranges from −c = −2.5 to c = 2.5. b Since U j,i ,
but not W j,i , has a band of large values around the delay j = 5 ms, the results correctly indicate that the
correlation was due to common input from a measured neuron. For W and U , the color scale ranges from
−c = −4.5 to c = 4.5. c Even if neuron two and the unmeasured neuron respond to the stimulus similarly
(as schematized by both circles being black in the top diagram), the connectivity measures W and U still
correctly indicate the presence of the common input connection, as only U j,i has a band of large values
around the delay j = 5 ms. For W and U , the color scale ranges from −c = −4 to c = 4. Delay is spike
time of neuron 1 minus spike time of neuron 2. Stimulus time is spike time (relative to stimulus) of the later
firing neuron

To average out this noise, we average W j,i and U j,i over stimulus time i , obtai-
ning W j

ave and U j
ave of Eq. (15). In Fig. 3a, b, we compare these average connectivity

measures with the JPSTH similarly averaged over stimulus times, i.e., the shuffle cor-
rected correlogram or covariogram [1,17,20]. For both the direct connection network
(Fig. 3a) and the common input network (Fig. 3b), the covariogram has a peak at delay
j = 5 ms. The presence of a causal connection cannot be deduced from the cova-
riogram. On the other hand, the average connectivity measures Wave and Uave clearly
distinguish the circuitry, as only Wave has a significant peak for the direct connection
network and only Uave has a significant peak for the common input network, and
these peaks occur around the delay of j = 5 ms that corresponds to the peaks in the
covariograms.
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A B C

Fig. 3 The averaged connectivity factors successfully determine the circuitry of the networks from Fig. 1.
The top three panels are the corresponding measures from Fig. 2 averaged over all stimulus times. The two
bottom panels are the connectivity measures calculated based on the assumption that the connectivity is
constant with respect to stimulus time. The covariogram (top plot, average of JPSTH) show a peak in the
correlation at the delay of 5 ms for all networks. a The averaged causal connection measure Wave correctly
determines that the correlation at a delay of 5 ms was due to a causal connection from neuron 1 onto neuron
2. Wave has a peak that is 3.5 standard errors above zero while Uave is within a standard error from zero.
The constant causal connection measure Wconst even more reliability indicates the direct connection, as it
reaches seven standard errors above zero. Gray lines indicate a bootstrap estimate of two standard errors,
calculated from 50 resamples. b The averaged common input measure Uave correctly determines that the
correlation at a delay of 5 ms was due to common input from an unmeasured neuron. Uave has a peak
that is five standard errors above zero while Wave is negative. The constant common input measure Uconst
also detects the common input, rising six standard errors above zero. c Even when the unmeasured neuron
and neuron 2 are from the same subpopulation (as indicated by black circles), the averaged common input
measure Uave correctly determines that the correlation at a delay of 5 ms was due to common input from
an unmeasured neuron. Uave has a peak that is four standard errors above zero while Wave is negative. On
the other hand, the constant causal connection measure Wconst incorrectly indicates that the correlation
was caused by a causal connection. Wconst rises nearly five standard errors above zero, while Uconst barely
exceeds two standard errors above zero. In this way, the constant connectivity measures Wconst and Uconst
must be interpreted with subpopulation ambiguity, as described in the text. Network diagrams (top) are
repeated from Fig. 1

We compare these results with the analogous connectivity measures W j
const and

U j
const that are estimated based on the assumption that they are constant with respect

to stimulus time i [14]. These measures are shown in the bottom two panels of Fig. 3.
We see that Wconst and Uconst also correctly identify the circuitry, as Wconst has a
significant peak for the causal connection and Uconst has a significant peak for common
input network. In fact, it appears that Wconst and Uconst do a better job at distinguishing
the circuitry, as the peak in Wconst is much more significant than the peak in Wave for
the direct connection network of Fig. 3a.
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The fact that Wconst performed better than Wave is understandable for two reasons.
First, Wconst contains many fewer degrees of freedom than Wave. And second, for the
direct connection network, W j,i should indeed be independent of time because the
simulated network (9) contained connectivity W̄ independent of stimulus time (and, as
shown by Eq. (7), W should be equal to W̄ if the network just has a direct connection).

The natural question then is why would one prefer Wave and Uave over Wconst
and Uconst if the former result in noisier estimates of the connectivity. The answer
is revealed by examination of Eq. (8) that defines U . Assume that the underlying
connectivity W̄ j,i

s̃,s does not depend on stimulus time point i . If ones assumes that

U j,i
s̃,s does not depend on i , then one is neglecting how the variance in the firing of

unmeasured common input neurons may change with stimulus time point. As discussed
in Ref. [14], this assumption does not affect the estimation of Wconst and Uconst except
in one case. And that case is when the activity of the unmeasured common input neuron
modulates with time in the same way as does the measured neuron that receives the
connection with shorter delay, i.e., neuron 2 in our example network. If the unmeasured
common input neuron of Fig. 3b happened to respond to the stimulus in a similar way
as neuron 2, then Wconst and Uconst would misidentify the connectivity pattern as
arising from a casual connection from neuron 2 onto neuron 1.

In the common input network of Fig. 3b, we chose the phase φ3 of the stimulus
kernel (10) of the unmeasured neuron to be different from the phase φ2 of neuron 2
(φ2 = π , φ3 = 3π/2). In this way, the phase of the modulation of the unmeasured
neuron’s activity with the sinusoidal stimulus was different than that of neuron 2. This
difference was enough for Wconst and Uconst to correctly identify the correlations as
arising from common input.

Of course, the entire motivation for this analysis is to address the case of common
input arising from unmeasured neurons. If the common input neuron is unmeasured,
one would have no way of discerning whether or not the neuron responded to the
stimulus in a similar way as neuron 2. Any interpretation of the results must include
the possibility that an unmeasured common input neuron responds to the stimulus
in a way similar to neuron 2. As mentioned above, such common input could be
misidentified by the constant connectivity measures. Indeed, if we change the phase
φ3 of the unmeasured common input neuron to be similar to that of neuron 2 (setting
φ3 = 1.2π ), we find that Wconst and Uconst misidentify the common input as a causal
connection (bottom two panels of Fig. 3c).

This observation leads to what we term subpopulation ambiguity in the interpre-
tation of Wconst and Uconst. If Wconst indicates that a correlation was due to a causal
connection from neuron 2 onto neuron 1, one can conclude that either there is such a
causal connection, or there is a causal connection onto neuron 1 from an unmeasured
neuron that responds to the stimulus in a similar manner as neuron 2 (i.e., is in the same
subpopulation, where a subpopulation is a group of neurons that respond similarly to
the stimulus). The drawback of this subpopulation ambiguity is mitigated by the fact
that, if one is measuring neurons’ activity only by their spike times, those neurons can
be identified only by how they respond to the stimulus, i.e., they are identified only by
their subpopulation. Hence, any conclusions one makes based on such data already
inherently contain subpopulation ambiguity [14].
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Nonetheless, with a simple stimulus such as a drifting grating, many neurons
responds similarly to the stimulus, with the main distinguishing factors being the
amount by which their activity is modulated by the stimulus and the phase of that
modulation. In this sense, the subpopulations defined by such a stimulus are large, so
that the subpopulation ambiguity significantly detracts from one’s ability to unders-
tand connectivity using Wconst and Uconst. For instance, the unmeasured neuron in
Fig. 3c has a stimulus kernel (10) that is quite different than that of neuron 2. But it
was effectively part of the subpopulation of neuron 2 because both neurons had similar
phase of modulation with the drifting grating stimulus.

Our motivation for allowing stimulus-dependent connectivity in our estimates of W
and U (and hence Wave and Uave) was to overcome this severe subpopulation ambiguity
with simple stimuli such as a drifting grating. In Figs. 2c and 3c, we demonstrate that
these stimulus-dependent connectivity measures can correctly identify the circuitry
even if the unmeasured common input neuron responds to the stimulus in a way
similar to the neuron that receives the connection with shorter delay (i.e., neuron 2
in our example network). In Fig. 2c, only Ui, j has a band of large values around
the delay of j = 5 ms. Similarly, in Fig. 3c, only U j

ave shows a significant peak at
the delay of j = 5 ms. The key point is that only Wave and Uave (and not Wconst and
Uconst) correctly identify the circuitry that underlies the correlation in the covariogram.
With the stimulus-dependent connectivity measures, one does not have subpopulation
ambiguity in the interpretation of the results.

To further explore the relative performance of the stimulus-dependent and constant
connectivity measures, we tested how well we could use these measures to classify net-
works as causal connection versus common input networks. We simulated 100 direct
connection networks and 100 common input networks similar to those from Figs. 1, 2
and 3 with randomly chosen parameters. We held the delays in the connectivity fixed
so that in all cases, the correlation due to the connectivity occurred around a delay of
5 ms. For each of the 200 simulations, we calculated Wave and Uave, and attempted to
classify the network structure based on the values of these measures at the delay of
5 ms, which we denoted W5 and U5, respectively. We used a simple linear classifier,
classifying the network as a causal connection network if W5 −U5 > θ for a threshold
θ . We then repeated this classification using Wconst and Uconst.

To evaluate each classification, we perform receiver operating characteristic (ROC)
analyses [26]. We let true positives correspond to direct connection networks that were
correctly classified as causal connection networks and false negatives be those that
were incorrectly classified as common input networks. Similarly, we let true negatives
be correctly classified common input networks and false positives be those incorrectly
classified as causal connection networks. With these definitions, we would expect
networks like those of Fig. 3c to lead to extra false positives classified from Wconst
and Uconst, as such common input networks would be likely misclassified as causal
connection networks.

For stimulus-dependent and constant connectivity measures, we calculated ROC
curves by classifying the results using a range of thresholds θ . For each θ , we calculated
the total number of true positives (denoted TP), false negatives (FN), true negatives
(TN), and false positives (FP) based on applying the connectivity analysis to the
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Fig. 4 Receiver operating characteristic (ROC) curves for simulated networks driven by a drifting grating
stimulus. The curves are based on a simple linear classifier, a thresholded value of W −U at a delay of 5 ms,
where W = Wave and U = Uave (thick dark line) and where W = Wconst and U = Uconst (thin light line).
True positive rate is the fraction of direct connection networks correctly classified, and false positive rate
is the fraction of common input networks misclassified as causal connection networks. The subpopulation
ambiguity in Wconst and Uconst increased the false positive rate of the resulting classifier so that the classifier
based on Wave and Uave performed better. Results were based on simulations of 100 direct connection
networks similar to that of Fig. 3a and 100 common input networks similar to those of Fig. 3b, c. For all
neurons s ∈ {1, 2, 3}, parameters were chosen independently from uniform distributions over the following
intervals: Ās ∈ (0.04, 0.08), ȳs ∈ (0.1, 0.2), σs ∈ (5, 20) ψs ∈ (0, 2π), fs ∈ (0, 0.6/σs ), φs ∈ (0, 2π),
τ stim

s ∈ (10, 50) ms, τ ref
s ∈ (0, 2) ms, τhist

s ∈ (10, 30) ms, as ∈ (2, 4). For direct connection networks,
we set d2,1 = 4 ms, sampled the direct connection strength uniformly from the interval b2,1 ∈ (0.4, 4),
and set all other bs̃,s = 0. For common input networks, we set d3,1 = 5 ms and d3,2 = 0 ms, sampled
the common input connection strengths uniformly and independently from the intervals b3,1 ∈ (2, 10) and
b3,2 ∈ (2, 10), and set all other bs̃,s = 0

spikes times of neurons 1 and 2 in each of the 200 simulated networks. Then, we
calculated the true positive rate as TPR = TP/(TP + FN) and the false positive rate as
FPR = FP/(FP + TN). As θ varies, the points (FPR,TPR) trace out the ROC curve
for a given classifier.

The ROC curves for the classifiers based on stimulus-dependent and constant
connectivity measures are shown in Fig. 4. As a perfect classifier corresponds to
(FPR,TPR) = (0, 1), a better classifier would have an ROC curve that stays closer to
the upper (TPR = 1) and left (FPR = 0) boundaries of the plot. Conversely, random
chance corresponds to the diagonal. Figure 4 shows that, at least for the drifting gra-
ting stimulus and the parameter ranges simulated, the stimulus-dependent connectivity
measures lead to a better classification. The false positives of the constant connectivity
measures that are caused by the subpopulation ambiguity tend to shift the ROC curve
for Wconst − Uconst to the right.

Only the relative position of the ROC curves, but not their absolute shape, is a
relevant indication of the classification ability of the connectivity measures. We could
move the ROC curves closer to the diagonal or the upper left corner by, for example,
changing the lower limits of the connectivity strengths or the simulation length. Both
classifiers will perform worse as the connectivity strength becomes small (for a given
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simulation length). Figure 4 demonstrates that, for these simulations, the elimination
of the subpopulation ambiguity in the stimulus-dependent connectivity measures out-
weighs the cost of the additional parameters and leads to a better classification of the
circuitry.

3.3 Result with random grating stimulus

In our second set of experiments, we stimulated the same networks with the rich
random grating stimulus. Because the stimulus was longer and elicited much more
temporal structure in the response of the neurons, W and U had many more degrees
of freedom than with the drifting grating stimulus. Moreover, the rich stimulus would
tend to expose differences among neurons’ response properties, making it less likely
that two neurons would have similar responses. In this way, the size of effective
subpopulations would be reduced compared to the drifting grating stimulus, and the
constant connectivity factors Wconst and Uconst would perform with less ambiguity.
Hence, the random grating stimulus would test the limits of the stimulus-dependent
connectivity factors and explore their value for experiments where the stimulus has
rich structure.

We first simulate the response of the direct connection network of Fig. 2a in response
to the random grating stimulus. The results are shown in Figs. 5a and 6a. The JPSTH
(Fig. 5a) clearly shows the correlation at a delay of 5 ms. The raw connectivity measures
W and U are difficult to interpret because, due to the many degrees of freedom in W
and U , they appear quite noisy. Upon close inspection, a band of large values (light
colors) at a delay of 5 ms is noticeable in W . The connectivity becomes evident upon
averaging over all stimulus time. The average connectivity measures Wave and Uave
clearly indicate that the correlation was due to a causal connection (Fig. 6a), as Wave
has a significant peak at the delay of 5 ms. The constant connectivity measures Wconst
and Uconst also correctly identify the circuitry, and the peak in Wconst is even more
significant than the peak in Wave.

Next, we simulate the response of the common input network of Fig. 2c. Note that
for the drifting grating stimulus, the unmeasured common input neuron was conside-
red part of neuron 2’s effective subpopulation, as the phase of its modulation with the
drifting grating was similar to that of neuron 2. Since most parameters of the unmea-
sured neuron’s stimulus kernel (10) differed substantially from those of neuron 2, we
expect the rich random grating stimulus to drive the the unmeasured neuron diffe-
rently than neuron 2. Hence, the unmeasured neuron would no longer be grouped as
part of neuron 2’s subpopulation and even the constant connectivity measures Wconst
and Uconst should correctly detect that the correlation was due to common input. These
results are borne out in Figs. 5b and 6b. The stimulus-dependent common input factor
U has a band of large values around the delay of 5 ms (Fig. 5b). Both the averaged
Uave and the constant Uconst common input factors have significant peaks around 5 ms.

The advantage of the stimulus-dependent connectivity factors is revealed only if
we choose the parameters of the unmeasured common input so that its stimulus kernel
(10) closely matches that of neuron 2. As shown in Figs. 5c and 6c, only then is the
unmeasured neuron considered part of neuron 2’s subpopulation and the subpopula-
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Fig. 5 Determination of the connectivity patterns for networks driven by random grating stimulus. Panels
as in Fig. 2, but note different scale for stimulus time. For all networks, the JPSTH indicates that the spikes of
neuron 1 are correlated with the spikes of neuron 2 delayed by about 5 ms. For JPSTH plots, the color scale
(see far right) ranges from −c = −5×10−5 to c = 5×10−5. a Results from the direct connection network
of Fig. 1a. A band of large values (light colors) of W is barely noticeable, giving a hint that the correlation
was due to a causal connection from neuron 2 onto neuron 1. For W and U , the color scale ranges from
−c = −3.5 to c = 3.5. Parameters as in Fig. 1a, except that Ā1 = 0.04, Ā2 = 0.03, and ȳ1 = ȳ2 = −0.12.
b Results from the common input network of Fig. 1c. Note that the common input neuron in the top diagram
is now shaded differently to indicate that it is no longer in neuron 2’s subpopulation when the stimulus is
the random grating sequence. The common input measure U shows a band of large values around a delay
of 5 ms, indicating that the correlation was due to common input from an unmeasured neuron. For W and
U , the color scale ranges from −c = −5 to c = 5. Parameters as in Fig. 1c, except that Ā1 = Ā3 = 0.04,
Ā2 = 0.03, ȳ1 = ȳ2 = ȳ3 = −0.11, and b3,1 = b3,2 = 8. c Results from a common input network,
where the parameters of the unmeasured common input neuron were chosen to be nearly identical to those
of neuron 2. The common input neuron is shaded the same color as neuron 2 in the top diagram to indicate
it is in neuron 2’s subpopulation. A band of large values in U at the delay of 5 ms indicates the correlation
was due to common input. For W and U , the color scale ranges from −c = −5 to c = 5. Parameters as in
b except that ȳ3 = −0.12, σ3 = 10, ψ3 = π/4, f3 = 0.5/σ3, and φ3 = 1.1π

tion ambiguity in Wconst and Uconst is revealed. The stimulus-dependent connectivity
factors W and U (especially their averages Wave and Uave) correctly identity the com-
mon input while the constant connectivity factors Wconst and Uconst misclassify the
correlation as arising from a causal connection.

We repeat the ROC analysis for the networks driven by the random grating sti-
mulus. As shown in Fig. 7, we get a different result than we did for networks dri-
ven by the drifting grating stimulus (Fig. 4). In this case, the classifier based on
the constant connectivity measures performs as good as or better than the classi-
fier based on the stimulus dependent connectivity measures. Given the number of
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A B C

Fig. 6 The averaged connectivity factors successfully determine the circuitry for the networks of Fig. 5.
The panels are as in Fig. 3. The covariogram has a peak at a delay of 5 ms for all networks. a The averaged
causal connection measure Wave correctly indicates that the correlation was due to a causal connection
from neuron 1 onto neuron 2. Wave has a peak that is 3.5 standard errors above zero and Uave is within a
standard error of zero at a delay of 5 ms. The constant causal connection measure Wconst also correctly
identifies the circuity, as it has an even more significant peak, rising over five standard errors above zero.
b The averaged common input measure Uave correctly identifies the source of the correlation as being due
to common input from an unmeasured neuron. Uave has a peak that is five standard errors above zero,
while Wave is negative. Although the network was the same as in Fig. 3c, the rich random grating stimulus
brings out the differences between neuron 2 and the unmeasured common input neuron so that they are
no longer in the same subpopulation. Hence, the constant connectivity measures also correctly identify the
common input, with a peak in Uconst that rises nearly five standard errors above zero. c Even when the
common input neuron responds to almost the same stimulus features as neuron 2, the averaged connectivity
measures correctly identify the common input. The peak in Uave is five standard errors above zero and Wave
is negative. On the other hand, the constant connectivity measures classify the correlation as arising from a
causal connection from neuron 2 onto neuron 1, as Wconst has a peak that is over six standard errors above
zero while Uconst remains within about two standard errors from zero. Hence, for the constant connectivity
measures Wconst and Uconst , the unmeasured neuron is in neuron 2’s subpopulation

kernel parameters that we randomly selected, it was highly unlikely that the ker-
nels for neurons 2 and 3 would be as similar as they were for Fig. 6c. Since we
were unlikely to randomly create a common input network where the subpopulation
ambiguity in Wconst and Uconst would cause them to misidentify the correlation as
due to a causal connection, the additional false positives in the classifier based on
Wconst − Uconst were rare. On the other hand, the additional variability due to more
parameters in Wave and Uave still affects the the classifier based on Wave − Uave. For
these reasons, adding stimulus dependence did not improve the classification of the
networks.
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Fig. 7 Receiver operating characteristic (ROC) curves for simulated networks driven by a random grating
stimulus. Figure is identical to Fig. 4 except for the different stimulus. The rich stimulus decreased the
subpopulation ambiguity in Wconst and Uconst so that the additional the false positive rate is negligible.
In this case, the classifier based on the constant connectivity measures performs as good as or better than
the classifier based on the stimulus-dependent connectivity measures, as the corresponding ROC curve is
primarily closer to the upper left corner. Parameters identical to Fig. 4 except that the intervals for the
nonlinearity parameters were chosen to decrease the firing rate: Ās ∈ (0.02, 0.06), ȳs ∈ (0.05, 0.15)

4 Discussion

4.1 Eliminating subpopulation ambiguity

The present work is an extension of earlier analyses designed to control for the effects
of hidden nodes that can corrupt estimates of causal connections among measured
nodes of the network [12–15]. These analyses were designed to distinguish causal
connections among measured nodes from common input connections arising from
hidden nodes. Since the earlier treatments did not allow the resulting connectivity
estimates to depend on stimulus time, they effectively assumed that hidden node acti-
vity was not modulated by the stimulus. This assumption does not detract from their
ability to distinguish circuitry with one exception. A particular form of common input
from a hidden node would be misclassified as a causal connection: if a hidden node
happened to be (a) connected to a measured node that was modulated by the stimulus
in a similar manner and (b) connected to another measured node with a longer delay,
then this common input configuration would be misidentified as a causal connection
from the first measured node onto the second.

Since one cannot rule out the possibility that such a common input configuration was
really underlying any identification of a causal connection, the resulting estimate of
causal connection must be interpreted with subpopulation ambiguity. We use the term
subpopulation to describe a group of nodes that respond to the stimulus in a similar
manner. Hence, a subpopulation is not an absolute grouping but one that depends on
the chosen stimulus. The subpopulation ambiguity means that the identification of a
causal connection from node 1 onto node 2 must be interpreted as the identification

123



168 D. Q. Nykamp

of a causal connection from a node within node 1’s subpopulation onto node 2. This
interpretation acknowledges the possibility that the correlation could have been due
to a hidden node from node 1’s subpopulation having common input connections onto
both node 1 and node 2 (with a longer delay onto node 2). Since this common input
configuration does include a connection from a node in node 1’s subpopulation onto
node 2, the subpopulation ambiguity precisely describes the degree of ambiguity in the
identification of connections. We stress that the subpopulation ambiguity does not refer
to connections among populations of nodes but simply ambiguity in the identification
of the individual nodes involved in the connections.

We have demonstrated how one can eliminate subpopulation ambiguity in connecti-
vity estimates by allowing these estimates to vary with the stimulus. With the stimulus-
dependent connectivity measures developed in this paper, we make no assumption
about how hidden node activity is modulated by the stimulus. Even if a hidden com-
mon input node happened to respond to the stimulus in exactly the same manner as
one of the connected measured nodes, the resulting correlation between the measu-
red nodes would still be correctly identified as arising from common input. Hence,
the identification of a causal connection between measured nodes can be interpreted
as a causal connection between the actual measured nodes. We have eliminated the
misidentification that lead to the subpopulation ambiguity.

4.2 Stimulus features and subpopulation ambiguity

The cost of the extension to stimulus-dependent connectivity measures was greater
degrees of freedom in the connectivity parameters that must be estimated, requiring
more data to obtain significant results. For this reason, the examples explored were
all based on long neuronal network simulations, especially in the case of the longer
random grating stimulus. Because one is limited in the length of experiment over which
one can record the same neurons, this stimulus-dependent connectivity analysis can
be practically applied only in those experiments where one has a short stimulus so that
the stimulus can be repeated many times. However, a short stimulus is exactly the type
of stimulus that leads to the most substantial subpopulation ambiguity in the constant
connectivity measures Wconst and Uconst of previous versions of the analysis.

With a short or simple stimulus, the effective subpopulations of the constant connec-
tivity measures would be large. If the range of responses elicited by the stimulus were
limited, then many nodes would respond to the stimulus in virtually identical manners.
These nodes would be effectively in the same subpopulation, and the subpopulation
ambiguity of the constant connectivity measures would limit their usefulness. Any
identification of causal connectivity inferred from those measures must be interpreted
with a large degree of ambiguity. Thus, with such stimuli, the stimulus-dependent
connectivity measures developed in this paper would allow a better determination
of the connectivity, as these measures are not subject to subpopulation ambiguity. It
is fortunate that it is precisely with such short stimuli that the stimulus-dependent
connectivity measures can be practically computed.

On the other hand, with a longer and richer stimulus, the effective subpopulations
of the constant connectivity measures are much smaller. A rich stimulus with many
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different features would more rigorously probe the properties of the nodes. A much
larger range of responses would be elicited by the stimulus, and fewer nodes would
respond identically. The subpopulation ambiguity would add only a little ambiguity
to the interpretation of the identified causal connectivity. If two nodes respond to the
stimulus in a similar manner, then it is likely that those nodes really do have similar
properties. In those cases, one may be content with the subpopulation ambiguity of
the constant connectivity measures and may not need to attempt to use the stimulus-
dependent connectivity measures to eliminate the subpopulation ambiguity. Indeed,
the results indicate that adding stimulus dependence to the connectivity measures
may have limited utility for properly classifying networks in cases where one expects
subpopulation ambiguity to be rare.

4.3 History-dependence and subpopulation ambiguity

As discussed in [14], the connectivity measures W and U (Wconst and Uconst as well)
distinguish common input from causal connections by exploiting two differences in
their influence upon the activity patterns of measured nodes. First, the connectivity
measures exploit how models such as (3) predict a different relationship between
activity patterns and the stimulus depending on the nature of the connectivity structure.
The subpopulation ambiguity results from exploiting these differences while keeping
the connectivity constant with respect to stimulus time.

The second difference between common input and causal connections is how they
interact with history-dependent properties of nodes. In the context of neuron spiking
patterns, such history dependent properties would be refractory periods or bursting
behavior. The connectivity measures exploit how models such as (3) predict a different
relationship between intra-neuron spiking patterns (i.e., history-dependent effects such
as those observed in an autocorrelation) and inter-neuron spiking patterns (i.e., correla-
tions such as observed in the covariogram) depending on network circuitry [14]. Since
such history-dependent effects do not involve the stimulus, they lead to a distinction
between common input and causal connections that is not subject to subpopulation
ambiguity, even if one assumes the connectivity is constant with respect to stimulus
time.

Both differences are contained in (4) that we use to calculate W and U . Normally,
these differences reinforce each other to produce the best estimate of the connecti-
vity patterns. However, when we use the constant connectivity measures Wconst and
Uconst and the actual underlying connectivity mirrors that of Figs. 3c or 6c, these two
differences oppose each other. Because of the subpopulation ambiguity, the exploi-
tation of the stimulus differences would tend to increase Wconst as the connectivity
should be classified as a causal connection subject to subpopulation ambiguity. On the
other hand, the exploitation of history-dependent differences would tend to increase
Uconst since, without subpopulation ambiguity, the connectivity should be classified
as common input.

In the examples shown in Figs. 3c and 6c, Wconst identified the correlations as ari-
sing from a causal connection, indicating that the history-dependent effects were not
strong enough to overcome the subpopulation ambiguity. We can change the balance
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between the history-dependent effects and the subpopulation ambiguity of the stimulus
effects by increasing the history-dependence in the model neurons. For example, we
can increase the relative refractory period of the neurons by increasing the parameters
as in (10). Doing so, increases Uconst and decreases Wconst at the delay where the
correlation is observed (i.e., at a 5 ms delay). In the examples of Fig. 3c and 6c, the
peaks in Wconst are essentially replaced by peaks in Uconst by the time we quadruple
all the as (not shown). Hence, adding strong history-dependence to the model neu-
rons eliminated the subpopulation ambiguity in these examples, enabling even the
constant connectivity measures Wconst and Uconst to correctly identify the common
input. These results suggest that if one is measuring from nodes that have strong his-
tory dependence7 (e.g., neurons whose spiking patterns are far from Poisson), then
the subpopulation ambiguity may have a smaller effect on the constant connectivity
measures, and one may not need to use the stimulus-dependent connectivity mea-
sures.

4.4 Relationship to other approaches

The question of determining causal interactions among networks has spawned many
analysis methods, such as Granger causality [6], partial coherence [3], partial directed
coherence [2,22], and transfer entropy [23]. There is also a large literature focused on
analyzing interactions among neurons [1,4,5,7,9–11,16,17,19–21,25,27]. Some of
these methods are designed to address common input, but, with one exception, they
can only control for common input arising from other measured nodes.

The one other approach that we are aware of that addresses common input arising
from hidden neurons is that of Kulkarni and Paninski [9]. Their analysis framework
contains a latent noise source that could model hidden common input. Their model is
a doubly-stochastic process or Cox process [24] that allows the latent noise source to
evolve with time. Although the approaches differ significantly, one similarity is that
our stimulus-dependent connectivity was derived from an analysis of how the hidden
common input node activity varies with time. A future task will be to compare the two
approaches.

4.5 Model dependence

Our approach is model based so that its success depends on choosing a model (3)
that captures how the activity of each measured node is modulated by its own history.
In the examples, we have used a GLM model of history-dependence (12), but any
other identifiable model of history-dependence could be used in the analysis. Since
we assume the stimulus has been repeated many times, we do not need to assume a
model for how the nodal activity is modulated by the stimulus. The advantage of the
HAH model is that is a model-independent description of the stimulus-dependence of
the nodal activity [15].

7 The unknown history-dependence of the hidden nodes does not play a role.
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The model (3) also requires that one postulate how the coupling from other nodes
could influence each measured node’s activity (i.e., one must choose a functional
form for the effect of the last argument of Ps). In our GLM models, the natural way to
include connectivity was underneath the nonlinearity (13). For the analysis to succeed,
the model must capture the essence of how other nodes could modulate the response
of the measured nodes.

As demonstrated by the examples, allowing stimulus-dependent connectivity esti-
mate does require that one has a lot of data and can repeat any stimulus many times.
Nonetheless, especially in cases where the stimulus is short and simple and where
the nodes do not exhibit a high degree of history-dependence, the stimulus-dependent
connectivity measures can be used to eliminate the significant subpopulation ambi-
guity that would otherwise degrade the connectivity estimates, thus allowing better
estimation of the underlying connectivity.

Appendix: Estimating model parameters

We sketch our algorithm for fitting the parameters of (12) for each measured neuron.
To reduce the dimension of the parameter space, we restricted both the Ps and hs

to live in subspaces as follows. We splined the stimulus parameters Ps with a linear
spline with grid spacing of ∆t = 5 ms for the drifting grating stimulus and ∆t = 20
ms for the random grating stimulus.

To estimate the history parameters hs of each measured neuron, we first calculated
the absolute refractory period τ absref

s as the minimum number of time bins observed
between spikes. Then, so that our model predicts absolutely no firing for τ absref

s time

steps after each spike, we set h j
s = −10100 for j ≤ τ absref

s . We restricted the remainder
of the history kernel hs to be in the subspace spanned by the vectors

Bk
s (i) =

⎧⎪⎨
⎪⎩

sin

(
πk

[
2 i−τ absref

s
τs

−
(

i−τ absref
s
τs

)2
])

for 0 < i − τ absref
s < τs

0 otherwise,

for 1 ≤ k ≤ 39. We set τs = 200 − τ absref
s time bins. We obtained basis vectors

through Gram-Schmidt orthonormalization of the Bs . These basis vectors are analo-
gous to those used in Ref. [8]; they can represent fine temporal structure for the time
immediately after the spike but are smoother for longer time scales.

For each fixed value of the scale factor As of the nonlinearity gs(·), we computed
MAP estimates of the nonlinearity parameter ys and the coefficients for the Ps and the
hs . We penalized the log-likelihood by adding the sum of the squares of the parameters,
multiplied by λ = 0.1. This penalty term prevented any parameters from becoming too
large, especially important when segments of the stimulus produced no spikes from a
neuron. In those cases, attempting to find maximum likelihood estimates would pull
some of the Pi

s toward minus infinity so that the probability gs(Pi
s )would tend to zero.

For a fixed value of As , calculating the MAP estimates was computationally trac-
table, as we chose our gs(·) to be convex and log-concave. This choice assured that
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maximization problem to determine all parameters except As would be a free of
non-global local maxima [18]. The MAP estimation of the parameters defined all
parameters as a function of As . We then searched for a value of As that maximized
the log-likelihood while keeping the other parameters set at this function of As .

The scale parameter As allows the nonlinearity gs(·) to interpolate between a expo-
nential function and a threshold-linear function. If As is a very large value, then the
MAP estimates of the parameters underneath the nonlinearity in (12) will be small
values (so that the variance of gs(·) will match the data). In the extreme case, the
exponential in gs(y) = As log(1 + exp(y + y0)) will always be small compared to
1, and the nonlinearity will be nearly exponential over its entire domain of sampled
values gs(y) ≈ As exp(y + y0). On the other hand, if As is a very small value,
then the MAP estimates of the other parameters will be relatively large. For posi-
tive arguments of the exponential, the exponential will be large compared to 1 and
gs(y) ≈ As(y + y0), and for negative values the exponential will be very small so
that gs(y) ≈ As exp(y + y0) ≈ 0. In the extreme case, the nonlinearity is nearly a
threshold linear function gs(y) ≈ max(As(y + y0), 0).

Despite the extra work to compute a value of As (because the log-likelihood is not
convex in As), we needed to allow As to be a free parameter fit from the data in order
to get good connectivity estimates. Equation (4) which we use to fit W and U depends
on the derivative of the probability function Ps(·). By allowing As to vary in our fit of
the parameters of Ps(·), we do not prescribe the relationship between values of Ps(·)
and its derivative. Rather, allowing As to be fit from the data gives a degree of freedom
in this relationship which, in our simulation tests, was important to achieving good
results.

A side effect of allowing As to vary among neurons means that the scale of the
parameters under the nonlinearity could vary substantially (inversely with As , as des-
cribed above). In an attempt to maintain a similar scale in the connectivity measures
W and U , we introduced the factor cs in (13). We determined cs as follows. Let
Y = Pi

s + ∑
j>0 h j

s Rk,i− j
s (the argument of the nonlinearity) and let µY equal its

mean over the data set, ignoring those points where Y < −10100 because of the
refractory period. We let cs be the standard deviation of a normal random variable Z
with mean µY that would make the variance of gs(Z) equal the variance of gs(Y ). In
this way, cs scaled the values of W comparable to the effective scaling of the other
parameters inside the nonlinearity. We matched the variance of gs(Y ) rather than Y
because large negative values of Y (from the relative refractory period) contribute little
to the actual variance of the spiking probability gs(Y ) even though they have a large
effect on the variance of Y itself.
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