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REVEALING PAIRWISE COUPLING IN LINEAR-NONLINEAR
NETWORKS∗

DUANE Q. NYKAMP†

Abstract. Through an asymptotic analysis of a simple network, we derive an estimate of the
coupling between a pair of units when all other units are unobservable. The analysis is based on
a model where the response of each unit is a linear-nonlinear function of a white noise stimulus.
The results accurately determine the coupling when all unmeasured units respond to the stimulus
differently than the measured pair. To account for the possibility of unmeasured units similar to
the measured pair, we cast our results in the framework of “subpopulations,” which are defined as a
group of units who respond to the stimulus similarly. We demonstrate that we can determine when
correlations between two units are caused by a connection between their subpopulations, although
the precise identity of the units involved in the connection may remain ambiguous. The result is
rigorously valid only when the coupling is sufficiently weak to justify a second-order approximation
in the coupling strength. We demonstrate through simulations that the results are still valid even
with stronger coupling and in the presence of some deviations from the linear-nonlinear model. The
analysis is presented in terms of neuronal networks, although the general framework is more widely
applicable.
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1. Introduction. This analysis of coupling within networks is motivated by
neuroscience, and we use the vocabulary of neuroscience throughout. The measured
response properties of a neuron arise from the structure of the neural network in
which the neuron is embedded. To understand the relationship between these response
properties and the neural network structure, one would like to simultaneously measure
the response of neurons and estimate their connectivity. However, it has proven
difficult to estimate the connectivity from measurements of neural activity because
only a small subset of neurons can be monitored simultaneously.

In particular, a direct connection between two measured neurons is difficult to
distinguish from a connection onto both neurons that originates from a third, unmea-
sured neuron. We refer to the latter configuration as the common input configuration.
We address the case where one simultaneously measures two neurons in a network and
attempts to distinguish the direct connection configuration from the common input
configuration.

This distinction is especially difficult because when studying a network, one typ-
ically does not directly measure the internal state of neurons, but records only their
discrete output events, called spikes. From simultaneous recordings of two neurons’
spike times, one can analyze the joint statistics of the two spike trains in hopes of
detecting a direct connection. Two widely used tools are the joint peristimulus time
histogram (JPSTH) and its integral, the shuffle-corrected correlogram [14, 1, 13]. Un-
fortunately, inferences from the JPSTH or correlogram about the connections between
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Fig. 1. To determine “subpopulation connectivity,” one needs to distinguish a direct connection
from only certain kinds of common input. Three sample network configuration are shown, where
neurons one and two are measured and the unlabeled neuron is not measured. The subpopulation
of each neuron, which is defined within the context of a model, is indicated by the shading (white,
gray, or black.) To determine subpopulation connectivity, as we have defined it, one must be able
to distinguish the right configuration from the left two configurations. In both of the left configura-
tions (but not in the right configuration), there is a connection from a neuron within neuron two’s
subpopulation (white) onto a neuron within neuron one’s subpopulation (gray). Hence, we do not
need to distinguish the left two configurations from each other in order to determine subpopulation
connectivity.

the two measured neurons are ambiguous because these measures cannot distinguish
a direct connection from common input.

The joint statistics of the two spike trains alone may be insufficient to distinguish
a direct connection from common input. If one could measure the neurons inducing
the common input effects, then the joint statistics of all the measured spike trains
would be sufficient, and one could use analysis tools such as partial coherence [15]
to distinguish a direct connection from common input. However, when one cannot
measure all possible sources of common input, one cannot rule out common input
through partial coherence.

Our approach is to analyze the joint statistics, not just of the measured spike
trains, but also of an experimentally controlled stimulus. The idea motivating this
approach is that the joint stimulus-spike statistics may be sufficient to distinguish
the direct connection configuration from the common input configuration even if the
neurons inducing the common input are unmeasured.

It turns out that we cannot distinguish a direct connection from all possible
cases of common input. Instead, we can characterize connectivity only in terms of
certain subpopulations of neurons, defined so that each neuron in a subpopulation
responds to the stimulus in a similar manner (the definition of responding “similarly”
is made in the context of a model). The concept of subpopulation connectivity is
illustrated in Figure 1. Imagine that the spikes of neuron one are correlated with a
delayed version of the spikes of neuron two, consistent with a direct connection from
neuron two onto neuron one. Our central result is that we can distinguish between
(A) a direct connection from neuron two onto neuron one and (B) common input
that does not originate from neuron two’s subpopulation. On the other hand, if the
common input does originate from neuron two’s subpopulation, the common input
may not be distinguishable from a direct connection. However, in this latter case,
the common input does contain a connection from neuron two’s subpopulation onto
neuron one. Consequently, the identification of a direct connection from neuron two
onto neuron one must be interpreted as the identification of a connection from neuron
two’s subpopulation onto neuron one. The precise identity of the neuron originating
the connection remains ambiguous (it could be neuron two or another neuron in
neuron two’s subpopulation). To summarize this ambiguity, we say we can determine
connectivity only at the level of subpopulations (and not at the level of individual
neurons).

Our analysis is fundamentally model-driven. The structure imposed by an explicit
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model gives the framework necessary for making the subtle distinction between a di-
rect connection and most cases of common input. In this paper, we analyze a network
modeled as interacting linear-nonlinear systems responding to a white noise stimulus.
Clearly, this choice limits the applicability of this implementation to networks that
can be approximated by this simple model. Our motivation for using this model is
the ability to compute analytic expressions for necessary stimulus-spike statistics. We
mention possible generalizations in the Discussion.

In section 2, we describe the model network and the assumptions required for the
analysis. In section 3, we derive analytic expressions for measurable stimulus-spike
statistics and solve the resulting system of equations for the coupling strength. We
test our findings via simulations in section 4, and discuss the results in section 5.

2. The model.

2.1. The model network. We base our analysis on a model network of linear-
nonlinear neurons that builds on the models we have presented previously [12, 10, 11,
9]. Let n be the (presumably unknown) number of neurons in the network. Let the
random vector1 X denote the stimulus. The components of X represent the spatio-
temporal sequence of stimulus values, such as the pixel values for each refresh of a
computer monitor.

The response of neuron q = 1, 2, . . . , n will depend on the convolution of the
stimulus with a spatio-temporal kernel2 h̄q, normalized so that ‖h̄q‖ = 1. To make
later notation simpler, we view the kernel h̄q as sliding along the stimulus with time,
and denote by h̄i

q the kernel shifted for the discrete time point i. We implicitly
view the temporal index of the stimulus as going backward in time, and write the
convolution of the kernel with the stimulus as the dot product h̄i

q · X.

Let the binary vector R represent the spike times of neurons in the network. A
component Ri

q = 1 indicates that neuron q spiked at time i; otherwise, Ri
q = 0. When

neuron p spikes, the probability that neuron q spikes j time steps later is modified
by the connectivity factor W̄ j

pq. The quantity W̄ j
pq is simply added to the convolution

h̄i
q · X.

The only nonlinear part of the linear-nonlinear model is that the above linear sum
is composed with a static monotonically increasing nonlinearity ḡq(·). This output
nonlinearity represents, for example, the neuron’s spike generating mechanism and
ensures that spiking probabilities stay between zero and one. The resulting linear-
nonlinear network model is the following expression for the probability of a spike of
neuron q at time i, conditioned on the stimulus and previous spikes (denoted R<i):

Pr
(
Ri

q = 1
∣∣X = x,R<i = r<i

)
= ḡq

⎛
⎝h̄i

q · x +

n∑
p=1

∑
j>0

W̄ j
pqr

i−j
p

⎞
⎠ .(2.1)

We let the recent stimulus X be a discrete approximation to temporal or spatio-
temporal Gaussian white noise. For the analysis, we need to estimate stimulus-spike
statistics conditioned on the stimulus. The estimation of these statistics implicitly
assumes that we repeat each realization of the white noise stimulus multiple times.

1With the exceptions of W̄ , we will use capital variables to denote random quantities.
2We use overbars (e.g., h̄) to indicate original model parameters, and will remove the bars (e.g.,

h) to indicate their estimates from data. In addition, we use subscripts to denote neuron index, and
superscripts to denote temporal indices.



2008 DUANE Q. NYKAMP

2.2. The weak coupling assumption. To facilitate our analysis, we make a
weak coupling assumption, which asserts that the coupling W̄ j

pq is sufficiently small to

justify a second-order approximation in W̄ . This assumption is really an assumption
on how W̄ scales with the number of neurons n. As one expands equations such as
(2.1) in powers of W̄ , one obtains terms that are kth-order in W̄ summed over the
population k times. Hence, one obtains terms of the magnitude (n〈W̄ 〉)k, where 〈W̄ 〉
is an average of n values of W̄ . To truncate this series at finite k, one at minimum
needs n〈W̄ 〉 < 1. For a densely coupled large network, the coupling strength must,
on average, scale at most like 1/n. (Individual connections could be stronger, as long
as the average scales like 1/n.) We compute an approximation of order k = 2, and
we ignore all terms that are third-order or higher in W̄ .

In our analysis, we go one step further. We ignore all second-order terms that
are not summed over the population. Since, in this case, we are not summing over
the population, it is no longer a scaling argument. This approximation simply asserts
than any one connection cannot be too large. We will use ≈ to indicate equality
within this modified second-order approximation in W̄ .

We use this approximation out of necessity, not because we believe it is justified
by the biology. However, we demonstrate with simulations that the results often still
hold even for larger coupling than needed for the analytic results.

2.3. Effective uncoupled neuron model. Our first step is to fit the spikes of
each neuron separately to an uncoupled linear-nonlinear model of the form3

Pr
(
Ri

q = 1
∣∣X = x

)
= gq

(
hi
q · x

)
,(2.2)

where ‖hi
q‖ = 1. For the purpose of subpopulation definitions, below, we imagine we

can do this for all neurons. In practice, of course, we can fit uncoupled models only to
the two measured neurons. Fitting the uncoupled model (2.2) when the spikes were
actually generated by the network model (2.1) defines the effective nonlinearities gq(·)
and kernels hi

q.

We derive expressions for the effective parameters in terms of the original param-
eters plus coupling effects. We simply need to calculate Pr(Ri

q = 1
∣∣X = x) from the

network model (2.1). Because we assume a second-order approximation in coupling
strength W̄ , it turns out that a first-order approximation in W̄ is sufficient for the
effective single-neuron parameters.4

From a trivial generalization of the calculation in Appendix A.1 of [11], we can
average the network model (2.1) over all spikes before time i to conclude that the
probability of a spike at time i is

Pr
(
Ri

q = 1
∣∣X = x

)
= ḡq(h̄

i
1 · x) +

n∑
p=1

∑
j>0

W̄ j
pq ḡ

′
q(h̄

i
1 · x)ḡp(h̄

i−j
p · x) + O(W̄ 2).(2.3)

Combining this expression with the uncoupled model (2.2), we obtain the following
relationship between the effective kernels hi

q and nonlinearities gq(·), on one hand,

3Note the absence of bars to indicate effective parameters that can be estimated from data (at
least for the measured neurons).

4We will show that all terms for the spike-pair statistics will be first- or second-order in W̄ (all
zero-order terms cancel out), and thus approximating the single-neuron parameters to first order is
sufficient to retain a second-order approximation for the spike-pair statistics.
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and the original model kernels h̄i
q and nonlinearities ḡq(·), on the other hand:

gq(h
i
q · x) = ḡq(h̄

i
q · x) +

n∑
p=1

∑
j>0

W̄ j
pq ḡ

′
q(h̄

i
q · x)ḡp(h̄

i−j
p · x) + O(W̄ 2).(2.4)

Since gq(h
i
q · x) and ḡq(h̄

i
a · x) differ by only a first-order correction, and we are

computing only to first order, we can simply erase the bars from ḡ and h̄ in the W̄ j
pq

term (creating a second-order error) to obtain

ḡq(h̄
i
q · x) = gq(h

i
q · x) −

n∑
p=1

∑
j>0

W̄ j
pqg

′
q(h

i
q · x)gp(h

i−j
p · x) + O(W̄ 2).(2.5)

This effective parameter relationship will be used in the following analysis to express
all equations in terms of the effective parameters.

2.4. Subpopulation definition. A subpopulation is a group of neurons that
respond to the stimulus in a similar manner. The effective kernel h derived from
fitting a neuron’s spikes to the uncoupled model (2.2) describes the relationship of
neuronal spikes to the stimulus. (In some contexts, this kernel would be referred
to as the neuron’s receptive field.) We base our subpopulation definitions on this
effective kernel. We define the similarity between two neurons based on the correlation
coefficient between the linear components from the uncoupled model (2.2):

cckpq = cor(hi
p · X,hi−k

q · X),(2.6)

where

cor(A,B) =
cov(A,B)√

var(A) var(B)
.

Note that −1 ≤ cckpq ≤ 1. In fact, since each component of X is a unit normal
random variable, the correlation coefficient is simply the cosine of the angle between
the kernels:

cckpq =
hi
p · hi−k

q

‖hi
p‖‖hi−k

q ‖
= hi

p · hi−k
q .(2.7)

(The last equality results because the kernels are normalized to be unit vectors.)

Define the maximum correlation coefficient as

ccmax
pq = max

k
cckpq.(2.8)

If ccmax
pq is large, then neurons p and q respond to the stimulus similarly, and we

consider the neurons as part of the same subpopulation. On the other hand, if ccmax
pq

is small, then we consider the neurons as parts of different subpopulations. For the
analysis, when we assume that neurons p and q are from different subpopulations,
we will effectively assume that each cckpq is O(W̄ ). We show via simulations that, in
practice, we can relax this condition somewhat.
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3. The analysis.

3.1. Overview of the analysis. We assume we have access to only the spikes of
neuron one and two (Ri

1 and Ri
2) as well as the discrete white noise stimulus X. Given

the stimulus, the probability of spikes from the network is specified by the network
model (2.1). We initially assume that all unmeasured neurons (with index p > 2) are
from different subpopulations than those of neurons one or two (in particular, that
cckp1 and cckp2 for all k are O(W̄ )). Using this assumption, we can solve for the direct

connection (W̄ j
21 and W̄ j

12) in terms of the joint statistics of the random variables Ri
1,

Ri
2, and X.

When we allow unmeasured neurons from the same subpopulations as the mea-
sured neurons, we do not change the algorithm to determine a direct connection.
We demonstrate that, with this algorithm, common input from neuron one’s sub-
population may be identified as a direct connection from neuron one onto neuron
two. Similarly, common input from neuron two’s subpopulation may be identified
as a direct connection from neuron two onto neuron one. Although this results in a
misidentification at the level of individual neurons, it still accurately identifies connec-
tivity at the level of subpopulations (since, for example, common input from neuron
two’s subpopulation does contain a connection from neuron two’s subpopulation onto
neuron one’s subpopulation).

For this analysis, we assume that we have an infinite dataset, so we can estimate
the expected values of functions of the random variables. Since in practice, we will
have much smaller datasets, we must reduce the bias in estimations from finite datasets
using a procedure such as that outlined in [12, 11, 8]. We do not address such bias
reduction here.

We give a brief overview of the analysis here and give more details of each step
in the following sections. In the first step, we analyze the spikes of neuron one and
neuron two separately. From their stimulus-spike statistics, we fit uncoupled linear-
nonlinear models (2.2) as if we were using standard white noise analysis methods such
as those outlined in [12]. This calculation is based on the mean spike rates5 (E{Ri

1}
and E{Ri

2}) and the stimulus-spike correlations (E{XRi
1} and E{XRi

2}). Since the
spike times are really given by the network model (2.1), the effective kernels (hi

q and

hi
2) and nonlinearities (g1(·) and g2(·)) are functions of network model parameters

(including coupling and parameters from other neurons), as given by (2.4).

Next, we calculate the spike rates conditioned on a particular realization of the
stimulus6 (E{Ri

1|X} and E{Ri
2|X}). These statistics are equivalent to the peristim-

ulus time histogram (PSTH) commonly used in the neuroscience literature.

We look at spike pairs, where neuron two spikes k units of time before neuron
one (note that k could be positive or negative). We subtract off the product of the
PSTHs from the rate of spike pairs conditioned on the stimulus, forming

E{Ri
1R

i−k
2 |X} − E{Ri

1|X}E{Ri−k
2 |X}.

The result is the JPSTH cast into the notation of the model.

If we take the expected value of the JPSTH over all realizations of the stimulus,

5Note that, due to the stationarity of the stimulus and model, many stimulus-spike statistics do
not depend on time, despite the notation. The mean rates E{Ri

q}, for example, do not depend on
the time point i.

6Here we assume that each realization of the stimulus is repeated multiple times.
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we obtain the shuffle-corrected correlogram or covariogram

Ck
21 = E{Ri

1R
i−k
2 } − E

{
E{Ri

1|X}E{Ri−k
2 |X}

}
.(3.1)

Here we have used the fact that E{E{Ri
1R

i−k
2 |X}} = E{Ri

1R
i−k
2 }. For a given value

of k, Ck
21 is effectively a sum over the diagonal of the JPSTH corresponding to the

delay k. From analysis of the network model (2.1), we derive an equation for Ck
21 in

terms of model parameters.
As we argued in the introduction, the covariogram alone is insufficient to distin-

guish common input from a direct connection. In terms of the model parameters,
there are too many unknowns to solve for W̄ k

21 (or W̄−k
12 if k < 0). To obtain more

equations, we combine white noise analysis methods with the JPSTH.
The key of the approach is to calculate the correlation7 of the JPSTH with the

stimulus:

Dki
21 = E{XRi

1R
i−k
2 } − E

{
XE{Ri

1|X}E{Ri−k
2 |X}

}
.(3.2)

Note that the stimulus-spike correlations (e.g., E{XRi
1}) were calculated by corre-

lating the stimulus with a binary vector (e.g., the Ri
1). The above statistic Dki

21 is a
correlation of the stimulus not with a spike vector, but with the vector composed of
values from the diagonal of the JPSTH corresponding to delay k. This vector is, of
course, not binary, but the correlation can be computed nearly identically. For a fixed
k, the result Dki

21 will be a vector of the same dimension as the correlations E{XRi
1}

and E{XRi−k
2 } and hence the same dimension as the kernels hi

1 and hi−k
2 .

Consequently, for a given k, we can decompose Dki
21 into components parallel to

the kernels hi
1 and hi−k

2 , calculating the coefficients Ak
1 and Ak

2 for which

Dki
21 = Ak

1h
i
1 + Ak

2h
i−k
2 + Oki,(3.3)

where Oki is perpendicular to hi
1 and hi−k

2 . By analyzing the network model (2.1),
we calculate expressions for Ak

1 and Ak
2 in terms of model parameters. From Ck

21, A
k
1 ,

and Ak
2 , we have three equations for each delay k.

If one compares the number of unknown parameters with the number of equations,
the situation still looks hopeless. Assume that we calculate the statistics for the delays
k = ±1,±2, . . . ,±M , so that we have 2M×3 = 6M equations.8 Assume also that the
coupling is zero for delays longer than M time units. Then the coupling parameters
are W̄ j

pq for j ∈ {1, 2, . . . ,M} and p, q ∈ {1, 2, . . . , n}, where n is the (presumably
unknown) number of neurons, for a total of Mn2 parameters.

If the number of neurons is more than two, the system appears vastly underdeter-
mined. This limitation make sense. If we were sufficiently audacious as to claim that
we could reconstruct the coupling of the entire network based on measures of just two
neurons, our absurdity would be exposed by this reality check. Our goal is simply to
estimate the direct connection W̄ j

21 and W̄ j
12 between the two measured neurons.

As demonstrated below, if we assume that unmeasured neurons are from different
subpopulations than the measured neurons, all the coupling terms involving unmea-
sured neurons appear in the same combination9 in all three sets of equations. We
denote this combination by Ûk, and refer to Ûk as the common input contribution10

7We use the term “correlation” loosely.
8We ignore the single-neuron statistics and single-neuron parameters for this rough calculation.
9For this overview, we ignore the presence of indirect connections (see section 3.3).

10It turns out that Ûk contains only combinations of coupling terms that correspond to common
input.
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to delay k. This notation makes it clear there are really only two unknowns per de-
lay k (Ûk and either W̄ k

21 or W̄−k
12 , depending on whether k is positive or negative,

respectively). We have a total of 2M × 2 = 4M parameters for 6M equations.11 The
system is actually overdetermined. Moreover, due to the weak coupling assumption
of section 2.2, the system is linear in Ûk, W̄ k

21, and W̄−k
12 . We can easily solve it via

least squares and estimate the direct connection between neurons one and two as well
as the effective common input.

This estimate is, of course, valid only when unmeasured neurons are from different
subpopulations than the measured neurons. We address the case of unmeasured neu-
rons from the same subpopulations as the measured neurons in section 3.4. There we
argue that our estimate of W̄ k

21 or W̄−k
12 accurately reconstructs connectivity between

the subpopulations of neuron one and neuron two.

3.2. Single-neuron statistics. In the following sections, we present more de-
tails of the analysis outlined above. As many of the calculations are long, we present
only the key details, referring where possible to similar calculations from previous
papers.

For each of the measured neurons q = 1, 2, we analyze its spikes Ri
q and the

stimulus X as though the uncoupled model (2.2) held. We view the parameters from
the uncoupled model (2.2) as effective parameters that can be estimated from the
stimulus-spike statistics. We have already calculated the effective parameter relation-
ship (2.5) that relates effective parameters to the original model parameters.

In terms of the effective parameters, the stimulus-spike correlation is

E{XRi
q} = E{XPr(Ri

q = 1
∣∣X)}

= E{Xgq(h
i
q · X)}

= E{g′q(hi
q · X)}hi

q,(3.4)

and the mean rate is

E{Ri
q} = E{Pr(Ri

q = 1
∣∣X)}

= E{gq(hi
q · X)},(3.5)

where we used the integration-by-parts formula (A.3) to obtain the final expression
for E{XRi

q}.
Given (3.4) and the normalization ‖hi

q‖ = 1, the effective kernel can be calculated
from the stimulus-spike correlation as

hi
q =

E{XRi
q}

‖E{XRi
q}‖

.(3.6)

If we assume a two-parameter family of nonlinear functions for gq(·), we can calculate
those parameters from E{Ri

q} and ‖E{XRi
q}‖ (see [12]).

3.3. Neuron pair statistics. We repeat the calculations of Appendices A and B
of [11], computing terms only up to the modified second-order approximation in W̄ ,
described above in section 2.2. To simplify the notation, we define W̄ k

pq = 0 for k ≤ 0.

11Although we could, in principle, look for higher-order corrections by retaining higher-order
terms in W̄ , the system would not collapse to 4M parameters, and we would have to look for more
equations.
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After long, tedious calculations and use of the effective parameter relationship (2.5),
most of the terms cancel out, and we are left with

Pr
(
Ri

1 = 1 &Ri−k
2 = 1

∣∣X = x
)
− Pr(Ri

1 = 1|X = x) Pr(Ri−k
2 = 1|X = x)

≈
[
W̄ k

21 +

n∑
p=3

∑
j>0

W̄ k−j
2p W̄ j

p1g
′
p(h

i−j
p · x)

]
g′1(h

i
1 · x)g2(h

i−k
2 · x)[1 − g2(h

i−k
2 · x)]

+

[
W̄−k

12 +

n∑
p=3

∑
j>0

W̄ j
1pW̄

−k−j
p2 g′p(h

i+j
p · x)

]
g1(h

i
1 · x)[1 − g1(h

i
1 · x)]g′2(h

i−k
2 · x)

+

n∑
p=3

∑
j>max(0,k)

W̄ j
p1W̄

j−k
p2 g′1(h

i
1 · x)g′2(h

i−k
2 · x)gp(h

i−j
p · x)[1 − gp(h

i−j
p · x)],

(3.7)

where ≈ indicates equality within our modified second-order approximation in W̄ .
Note that if k ≤ 0, then W̄ k

21 = 0 and W̄ k−j
2p = 0, and the first expression in square

brackets is zero. On the other hand, if k ≥ 0, then W̄−k
12 = 0 and W̄−k−j

p2 = 0, and
the second expression in square brackets is zero. Consequently, either the first or the
second term is zero for any given k.

This expression is the expected value of the JPSTH, given that the stimulus
X = x. Note that the first term is a direct connection with delay k from neuron two
to neuron one, combined with an indirect connection through neuron p of total delay
k. The second term is a direct connection, combined with an indirect connection,
from neuron one to neuron two (of total delay −k, which is positive when this term is
nonzero). The last term is due to common input from neuron p onto both neuron one

and neuron two. (The expression W̄ j
p1W̄

j−k
p2 is nonzero only if neuron p is connected

to both neuron one and neuron two.)
The covariogram (3.1) is the expected value of the JPSTH (3.7), and the statistic

D (3.2) is the expected value of the JPSTH (3.7) times the stimulus X. Without
further assumptions on the unmeasured neurons, we cannot dissociate the contribution
of unmeasured neurons from the contribution of measured neurons. In order to solve
the equations, we assume that we can factor each expected value into (A) the expected
value of an expression involving unmeasured neuron parameters multiplied by (B) the
expected value of an expression involving measured neuron parameters. Note that
unmeasured neuron parameters appear only in those terms that are second-order in
W̄ . Given our second-order approximation in W̄ , this step assumes that, to zeroth
order in W̄ , the gp(h

i−j
p · X) are independent of g1(h

i
1 · X) and g2(h

i−k
2 · X) (i.e.,

the effective uncoupled models (2.2) for unmeasured neurons are independent of the
effective uncoupled models for measured neurons). In particular, we are assuming

that ccjp1 and ccj−k
p2 are O(W̄ ), which means that the unmeasured neurons are from

different subpopulations than the measured neurons (as defined in section 2.4).
Under this assumption the covariogram (3.1) (i.e., the expected value of the

JPSTH (3.7)) becomes12

Ck
21 ≈ Ŵ k

21E{g′1(hi
1 · X)g2(h

i−k
2 · X)[1 − g2(h

i−k
2 · X)]}

+ Ŵ−k
12 E{g1(h

i
1 · X)[1 − g1(h

i
1 · X)]g′2(h

i−k
2 · X)}

+ Ûk
21E{g′1(hi

1 · X)g′2(h
i−k
2 · X)},(3.8)

12Recall that stationarity of the stimulus and model imply that the statistics in the equation for
Ck

21 (as well as Ak
1 and Ak

2) do not depend on time point i, despite the notation.
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where ≈ indicates equality within our modified second-order approximation in W̄ and

Ŵ k
21 = W̄ k

21 +

n∑
p=3

∑
j>0

W̄ k−j
2p W̄ j

p1E{g′p(hi−j
p · X)},

Ŵ−k
12 = W̄−k

12 +

n∑
p=3

∑
j>0

W̄ j
1pW̄

−k−j
p2 E{g′p(hi+j

p · X)},

Ûk
21 =

n∑
p=3

∑
j>max(0,k)

W̄ j
p1W̄

j−k
p2 E{gp(hi−j

p · X)[1 − gp(h
i−j
p · X)]}.(3.9)

The new parameters Ŵ k
21 and Ŵ−k

12 are the effective direct connections between neu-

rons one and two. (By definition, Ŵ k
21 = 0 for k ≤ 0 and Ŵ−k

12 = 0 for k ≥ 0.) Note

that this effective direct connection factor Ŵ is a combination of both the direct con-
nections and the indirect connections through any unmeasured neuron p. This fact
indicates that we cannot distinguish between direct connections and indirect connec-
tions through unmeasured neurons. Our goal is to distinguish these effective direct
connections Ŵ from the effective common input Û , which is the sum total effect from
all unmeasured neurons p that project to both neuron one and neuron two.

We multiply the JPSTH (3.7) by X, take the expected value, and use the inte-
gration-by-parts formula (A.3) to obtain an expression for Dki

21 (given by (3.2))

Dki
21 ≈ Ak

1h
i
1 + Ak

2h
i−k
2 + Oki,(3.10)

where Oki is an expression that is O(W̄ 2) and involves the kernels of the unmeasured
neurons. Since we are assuming that the unmeasured neurons are from different
subpopulations than the measured neurons, Oki can be viewed as orthogonal to13 hi

1

and hi−k
2 . The components of Dki

21 parallel to hi
1 and hi−k

2 are

Ak
1 = Ŵ k

21E{g′′1 (hi
1 · X)g2(h

i−k
2 · X)[1 − g2(h

i−k
2 · X)]}

+ Ŵ−k
12 E{g′1(hi

1 · X)[1 − 2g1(h
i
1 · X)]g′2(h

i−k
2 · X)}

+ Ûk
21E{g′′1 (hi

1 · X)g′2(h
i−k
2 · X)},

Ak
2 = Ŵ k

21E{g′1(hi
1 · X)g′2(h

i−k
2 · X)[1 − 2g2(h

i−k
2 · X)]}

+ Ŵ−k
12 E{g1(h

i
1 · X)[1 − g1(h

i
1 · X)]g′′2 (hi−k

2 · X)}
+ Ûk

21E{g′1(hi
1 · X)g′′2 (hi−k

2 · X)}.(3.11)

From measuring the spikes of neuron one and two (Ri
1 and Ri

2) in response to
the stimulus X, we can calculate the effective uncoupled model parameters (g1(·),
g2(·), hi

1, and hi−k
2 ), the covariogram Ck

21 (via (3.1)), the statistic Dki
21 (via (3.2)),

and consequently its components Ak
1 and Ak

2 . The nine expected values in (3.8) and
(3.11) are simply Gaussian integrals of known functions that can be calculated. The
only unknown quantities are the Ŵ−k

12 , Ŵ k
21, and Ûk

21.

To emphasize that the direct connection is simply one variable per delay, we define

13Since, for any p > 2 and any j, the correlation coefficients ccjp1 and ccj−k
p2 are assumed to be

O(W̄ ), the component of hi−j
p parallel to hi

1 or hi−k
2 is O(W̄ ). Hence, the component of Oki parallel

to these kernels must be O(W̄ 3), which we can ignore.
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Fig. 2. Schematic of common input from unmeasured neuron p onto measured neurons one and
two. The gray shading indicates which neurons are from the same subpopulation. The connection
from neuron p to neuron one is delayed, so the common input introduces a correlation between
the spikes of neuron one and two that is similar to the correlation induced by a connection from
neuron two to neuron one. (A) Neuron p is within neuron two’s subpopulation. In this case, the
common input may appear as a direct connection from neuron two onto neuron one. (B) Neuron p
is within neuron one’s subpopulation. In this case, the common input will not be confused with a
direct connection.

a new direct connection variable

Ŵ k =

⎧⎪⎨
⎪⎩
Ŵ−k

12 for k < 0,

0 for k = 0,

Ŵ k
21 for k > 0.

(3.12)

Note that the equations for different delays k are uncoupled. For each k 	= 0, equations
(3.8) and (3.11) are three linear equations for the two unknowns Ûk

21 and Ŵ k. This
system is easily solved for the two unknowns using linear least squares. For k = 0,
the only unknown is Û0

21, for which we solve using (3.8).

3.4. Common input from the measured neurons’ subpopulations. To
complete the above analysis, we assumed that the unmeasured neurons were from dif-
ferent subpopulations than the measured neurons. In particular, we assumed that the
correlation coefficients between the measured neurons and the unmeasured neurons
(cckp1 and cckp2 for p > 2 and all k) were small.

In the brain, one typically finds groups of neurons that respond to a stimulus in a
similar way and hence would be from the same subpopulation, as we defined them in
section 2.4. Consequently, one would anticipate the presence of unmeasured neurons
from the subpopulations of both neuron one and neuron two. Since such measured
neurons could be the source of common input, we must address the case of common
input from the neurons within the measured neurons’ subpopulations. (With the
exception of common input and indirect connection effects, all effects of unmeasured
neurons had already been canceled in the analysis leading to the JPSTH (3.7), before
we made any assumptions about subpopulations.)

We examine networks with a common input configuration where an unmeasured
neuron p has a connection onto neuron two, and, with a longer delay, a connection onto
neuron one, as schematized in Figure 2. To implement this, we let the connection onto
neuron one have a delay of j time steps (W̄ j

p1 	= 0) and the connection onto neuron

two have a delay of j − k time steps (W̄ j−k
p2 	= 0), with j > k > 0. With this set of

delays, the common input will introduce correlations between the measured neurons
that mimic a direct connection from neuron two onto neuron one with a delay of k
time steps.

We first show how common input from neuron two’s subpopulation (Figure 2(A))
can be misidentified as a direct connection from neuron two onto neuron one. (Note
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that this results in a correct identification of a connection from neuron two’s sub-
population onto neuron one’s subpopulation.) Since the connection from neuron p

onto neuron two is due to the term W̄ j−k
p2 	= 0, the correlation coefficient ccj−k

p2 will
determine whether the neuron p acts as a member of neuron two’s subpopulation
(this inference comes from inspection of the last term in the JPSTH (3.7)). If ccj−k

p2

is large, neuron p will act as a member of neuron two’s subpopulation.
We examine the extreme case where neuron p responds to nearly the same stim-

ulus features as neuron two does j − k time steps later; i.e., hi−j
p = hi−k

2 + O(W̄ ).

Consequently, ccj−k
p2 = 1+O(W̄ ). Then, the contribution of this neuron to the JPSTH

(3.7) is

W̄ j
p1W̄

j−k
p2 g′1(h

i
1 · x)g′2(h

i−k
2 · x)gp(h

i−k
2 · x)[1 − gp(h

i−k
2 · x)].

The contribution of neuron p to the covariogram is

Ck
21 = W̄ j

p1W̄
j−k
p2 E{g′1(hi

1 · X)g′2(h
i−k
2 · X)gp(h

i−k
2 · X)[1 − gp(h

i−k
2 · X)]}.(3.13)

Since the kernel hi−j
p is identical to hi−k

2 , an additional term will appear in Ak
2 after

the integration by parts, so that the contribution of neuron p to Ak
1 and Ak

2 is

Ak
1 = W̄ j

p1W̄
j−k
p2 E{g′′1 (hi

1 · X)g′2(h
i−k
2 · X)gp(h

i−k
2 · X)[1 − gp(h

i−k
2 · X)]},

Ak
2 = W̄ j

p1W̄
j−k
p2 E{g′1(hi

1 · X)g′′2 (hi−k
2 · X)gp(h

i−k
2 · X)[1 − gp(h

i−k
2 · X)]}

+ W̄ j
p1W̄

j−k
p2 E{g′1(hi

1 · X)g′2(h
i−k
2 · X)g′p(h

i−k
2 · X)[1 − 2gp(h

i−k
2 · X)]}.(3.14)

Compare this contribution to the effect of a direct connection from neuron two
to neuron one at a delay of k units of time (the W̄ k

21 terms from (3.8) and (3.11)):

Ck
21 = Ŵ k

21E{g′1(hi
1 · X)g2(h

i−k
2 · X)[1 − g2(h

i−k
2 · X)]},

Ak
1 = Ŵ k

21E{g′′1 (hi
1 · X)g2(h

i−k
2 · X)[1 − g2(h

i−k
2 · X)]},

Ak
2 = Ŵ k

21E{g′1(hi
1 · X)g′2(h

i−k
2 · X)[1 − 2g2(h

i−k
2 · X)]}.(3.15)

Ignoring the first term of Ak
2 in (3.14), we observe that the relationship among Ck

21,
Ak

1 , and Ak
2 in (3.13) and (3.14) is nearly identical to their relationship in (3.15). For

the case gp = g2, the only difference is the additional common factor of g′2(h
i−k
2 · X)

in the expected value.
If the second term of Ak

2 in (3.14) does dominate the first term, then the common
input from neuron two’s subpopulation leads to a relationship among the statistics
Ck

21, Ak
1 , and Ak

2 that mimics a direct connection from neuron two to neuron one.
Consequently, we would expect that applying the results of section 3.3 would indicate
the presence of a direct connection. Simulations confirm that the second term of Ak

2

in (3.14) does indeed dominate, as network configurations such as Figure 2(A) are
categorized as direct connection configurations.

We next consider the case where neuron p is from neuron one’s subpopulation
(Figure 2(B)). If neuron p responds to the stimulus almost exactly as neuron one
does, j time steps later, the analysis does not give a clear answer. If we assume hi−j

p =

hi
1 + O(W̄ ) so that ccjp1 = 1 + O(W̄ ), we do not obtain a relationship among Ck

21,

Ak
1 , and Ak

2 that mimics their relationship in (3.15). In this case, simulations indicate
that this configuration appears as common input. (Of course, if the connection from
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neuron p to neuron two had the longer delay, the network would be equivalent to
Figure 2(A) with the roles of neuron one and two reversed. In this case, the network
would mimic a direct connection from neuron one to neuron two.)

We conclude that we cannot distinguish between a direct connection from neu-
ron two onto neuron one and common input from neuron two’s subpopulation. (An
equivalent statement holds with the roles of neuron one and neuron two reversed.)
Since common input from neuron two’s subpopulation does contain a connection from
neuron two’s subpopulation onto neuron one, we conclude that the connectivity is cor-
rectly identified at the level of subpopulations. In applications where the distinction
among particular neurons within a subpopulation is unimportant, the ambiguity in
the precise identification of the connection is not problematic. See the Discussion for
more details.

4. Tests via simulation.

4.1. Simulations of small linear-nonlinear networks. We tested our ana-
lytic results with simulations of networks of linear-nonlinear neurons given by (2.1).
We used kernels h̄i

q that capture some features of the responses of neurons in visual
cortex [6]. For spatial grid point j = (j1, j2) and time t, the kernels were of the form

h̄q(j, t) = (t− bq) exp

(
− t− bq

τh
− |j|2

10

)
sin((j1 cosψq + j2 sinψq)fq + φq)(4.1)

for t > bq and h̄q(j, t) = 0 otherwise. We sampled h̄q(j, t) on a 10 × 10 × 10 grid and
normalized it to the unit vector h̄i

q. For the analysis, the only important geometry

is the inner product between the kernels, h̄i
q · h̄i−j

p , which is the correlation between

normal random variables h̄i−j
p · X and h̄i

q · X.
For each example, we simulated the network response to 500,000 units of time,

adjusting the nonlinearities ḡq(·) to obtain between 10,000 and 15,000 spikes from
each neuron. Each simulation was composed of 100 trials, each lasting 5,000 units of
time. For ten trials, the stimulus was independent realizations of the Gaussian white
noise. We repeated each realization ten times to form the 100 trials. The repetitions
allowed estimation of the spiking probabilities Pr(Ri

1|X = x) and Pr(Ri−k
2 |X = x)

needed for the JPSTH (3.7) by averaging over the ten repetitions (equivalent to a
shuffle correction).

The analysis was based on expected values of stimulus-spike statistics. Naive
estimates of products of these statistics, including the shuffle correction, from finite
datasets can be highly biased. We reduced these biases using techniques described
elsewhere [12, 11, 8]. From the independent trials, we estimated confidence intervals
as described in Appendix C.

To compute the Gaussian integrals in (3.8) and (3.11), we needed to choose a form
for the nonlinear functions gq(y). To allow us to compute the integrals analytically,
we assume that the nonlinear functions are error functions of the form

ḡq(y) =
1

2

[
1 + erf

(
y − ȳq

ε̄q
√

2

)]
,(4.2)

where ȳq is the threshold, ε̄q defines the steepness of the nonlinearity, and the error

function is erf(y) = 2√
π

∫ y

0
e−t2dt. Note that limy→∞ gq(y) = 1 and limy→−∞ gq(y) =

0. The expressions for Ck
21, A

i
1, and Ai−k

2 for the case of an error function nonlinearity
are given in Appendix B. We demonstrate below that the results are not sensitive to
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Fig. 3. Results from sample simulations showing successful distinction between (A) the direct
connection configuration and (B) the common input configuration, using only the spike times from
neurons one and two. The top panels are schematics of the network architecture, with grayscale
plots of the time slice in which each kernel (h1, h2, or h3, labeled by neuron number) reached
its maximal value. (The spikes of neuron three were used to calculate h3 for this illustration.
The remaining analysis used only the spikes of neuron one and two.) The bottom three panels
plot with black lines the covariogram C, direct connection measure W, and common input measure
U . The gray lines estimate confidence intervals of one standard error. Delay is the spike time of
neuron one minus the spike time of neuron two. (A) The direct connection from neuron two onto
neuron one creates a positive covariogram C around a delay of four units of time. The significantly
positive direct connection measure W at that delay indicates that the correlation was due to a direct
connection. The negative common input measure U , though indicating departure from the weak
coupling assumption, does not confuse the direct connection interpretation. The direct connection
was given by W̄ 4

21 = 0.8, W̄ 3
21 = W̄ 5

21 = 0.4. (All other W̄ were zero.) Parameters used: τh = 2,
ψ1 = π/8, ψ2 = −π/4, φ1 = 0, φ2 = π, f1 = 1.0, f2 = 0.3, b1 = b2 = 0, T̄1 = 2.3, T̄2 = 2.8, ε̄1 = 0.5,
ε̄2 = 1.0. (B) For the network with common input from unmeasured neuron three, the covariogram
C is nearly identical to the direct connection case from panel A. The fact that the correlation was
due to common input is revealed by the positive U (and negative W). The common input to neuron
one was delayed four more units of time compared with that to neuron two: W̄ 6

31 = W̄ 2
32 = 1.8,

W̄ 5
31 = W̄ 7

31 = W̄ 1
32 = W̄ 3

32 = 0.8. Parameters as in (A) except ψ3 = 0, φ3 = −π/3, f3 = 0.6,
b3 = 0, T̄1 = 2.6, T̄2 = 3.0, T̄3 = 2.4, ε̄3 = 0.7.

this particular choice of nonlinear function. One could perform a similar analysis for
other nonlinear functions, although then one would presumably need to compute the
integrals numerically.

We denote by Ck the covariogram Ck
21 (3.1) estimated from a dataset. Similarly,

we denote by Wk and Uk estimates of the direct connection Ŵ k (3.12) and common
input Ûk

21 (3.9), respectively.

To illustrate the method, we looked at minimal networks containing two or three
neurons. First, we simulated a pair of neurons, where neuron two has a direct connec-
tion onto neuron one. The results are shown in Figure 3(A). The covariogram C shows



REVEALING PAIRWISE COUPLING 2019

a peak at the delay corresponding to the connection. However, the covariogram does
not indicate whether this spike correlation is due to a direct connection or common
input from an unmeasured neuron.

This ambiguity is resolved by the measures W and U . The direct connection
measure W is significantly positive at the delay corresponding to the connection. On
the other hand, the common input measure U is negative at that delay. Hence, W
and U indicate that the spike correlation was caused by a direct connection rather
than by a common input.

Note that the noise in W and U is dramatically greater than in the covariogram C.
This increase is presumably due to the subtlety of the distinction we are attempting
to make. For this reason, we required long simulations with up to 15,000 spikes to
obtain good results.

The reciprocal behavior observed between W and U is not predicted by the analy-
sis. According to the analysis, U should be flat in the presence of a direct connection.
The fact that U is negative is surprising. Simulations indicate that this behavior is
a result of a breakdown in the weak coupling assumption. For a weaker direct con-
nection (and much longer simulation to compensate for noise), the reflection in U
disappears (not shown). The combination of a positive W and a negative U could
theoretically be caused by either a positive direct connection or a negative common
input. The ambiguity is removed by the positive C, indicating that we indeed have a
positive direct connection.

We next simulated three neurons, where the unmeasured neuron three was a
source of common input to neurons one and two. In this example, neuron three was
from a different subpopulation than neuron one or two, as defined in section 2.4.
Figure 3(B) shows the results obtained from analyzing the spikes of neurons one
and two. The covariogram C is essentially identical to the direct connection case
in Figure 3(A). The covariogram cannot be used to distinguish this common input
configuration from the direct connection configuration. This distinction can be made
from the measures W and U . In this case, the common input measure U is significantly
positive, while the direct connection measure W is negative. Since C is positive, this
combination correctly indicates the common input configuration.

We demonstrate in Figure 4 two simulations to confirm our analysis, with com-
mon input from neurons within the subpopulation of neuron one or neuron two (sec-
tion 3.4). We retain the same common input configuration of Figure 3(B), but change
the kernel of the unmeasured neuron three to match the kernel of either neuron two
or neuron one.

For the case when the unmeasured neuron three was in neuron two’s subpopu-
lation (Figure 4(A)), the common input appears as a direct connection from neuron
two onto neuron one, because W is significantly positive. The results fail to correctly
identify that neuron two does not have a direct connection onto neuron one. If one
cares about the distinction between neuron two and neuron three, then this result is
unacceptable. If, on the other hand, the precise of identity of neurons within a sub-
population is unimportant, the results are adequate, as they correctly indicate that a
neuron from neuron two’s subpopulation has a direct connection onto neuron one.

For the case when the unmeasured neuron three was in neuron one’s subpopulation
(Figure 4(B)), the results correctly indicate the common input configuration. In this
network, there was no direct connection from neuron two’s subpopulation onto neuron
one’s subpopulation. Fortunately, the similarity between neuron three and neuron one
does not affect the results.
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Fig. 4. Tests of the effect of common input from an unmeasured neuron within the subpopulation
of neuron one or neuron two. Panels as in Figure 3. (A) The network configuration is identical
to the common input of Figure 3(B) except that the kernel of neuron three is similar to that of
neuron two (ccmax

32 > 0.9; see (2.8)), so that neuron three is in neuron two’s subpopulation. In
this case, the common input is misidentified as a direct connection (W is positive). W can be
interpreted as indicating a direct connection from a neuron within neuron two’s subpopulation onto
neuron one. The connectivity W̄ and the parameters are identical to those of Figure 3(B) except
b2 = 2, ψ3 = −3π/8, φ3 = 7π/8, f3 = 0.4, T̄2 = 3.4. (B) When the kernel of neuron three is
similar to that of neuron one (ccmax

31 > 0.9) so that neuron three is in neuron one’s subpopulation,
the common input is correctly identified (U is positive). In this case, there is no connection from
neuron two’s subpopulation to neuron one. The connectivity W̄ and the parameters are identical to
those of Figure 3(B) except b1 = 6, ψ3 = π/8, φ3 = 0.0, f3 = 0.8, T̄1 = 3.0.

As indicated by the analysis, our approach cannot distinguish a direct connection
from an indirect connection via a third intermediate neuron. An example of an indirect
connection is shown in Figure 5(A). Since the direct connection measure W is positive,
the indirect connection is classified as a direct connection.

Although the analysis was based on an error function nonlinearity (4.2), the re-
sults are not sensitive to small changes in nonlinearity shape. In Figure 5, we demon-
strate a simulation with a (truncated) power law nonlinearity: ḡq(y) = min{Aqy

βq , 1}
for y > 0, and ḡq(y) = 0 otherwise. This example includes both a direct connection
from neuron one onto neuron two (we use the sign convention where this is a negative
delay) and common input from an unmeasured neuron three (with a positive net de-
lay, so that it mimics a connection from neuron two onto neuron one). We analyzed
the spike responses from neurons one and two (Ri

1 and Ri
2) and the stimulus X just

as we did in the previous examples; i.e., we used the results of Appendix B, in which
the nonlinearities ḡq(·) are assumed to be error functions.

The covariogram contains two similar peaks at a positive and negative delay and
therefore cannot distinguish the two type of connections. The measures W and U
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Fig. 5. Further demonstrations of the approach. Panels as in Figure 3. (A) An indirect
connection from neuron two onto neuron one through an unmeasured neuron three. This connection
appears as a direct connection (W is positive). As shown by the analysis, we cannot distinguish such
an indirect connection from a direct connection. The indirect connection is given by W̄ 2

23 = W̄ 2
31 =

1.6, W̄ 1
23 = W̄ 3

23 = W̄ 1
31 = W̄ 3

31 = 0.8. Parameters are identical to Figure 3(B) except T̄1 = 2.5,
T̄2 = 2.8, T̄3 = 2.6. (B) A simulation with nonlinear functions ḡq(·) given by power laws. In this
case, the network contains a direct connection from neuron one onto neuron two (corresponding
to a negative delay) and common input from unmeasured neuron three onto neurons one and two
(with a longer delay to neuron one to give a positive delay). The spikes of neuron one and two
were analyzed as though the nonlinearities were error functions. Although the covariogram contains
two virtually identical peaks, the measures W and U successfully identify the direct connection at
negative delay and the common input at positive delay. The connections were given by W̄ 4

12 = 0.6,
W̄ 3

12 = W̄ 5
12 = 0.4, W̄ 6

31 = W̄ 2
32 = 1.8, W̄ 5

31 = W̄ 7
31 = W̄ 1

32 = W̄ 3
32 = 0.8. Kernel parameters are as

in Figure 3(B). Power law parameters: A1 = 0.02, A2 = 0.035, A3 = 0.05, β1 = 2.6, β2 = 2.0,
β3 = 2.3.

differentiate between the origins of these peaks. Since W is positive at a negative
delay, it indicates a direct connection from neuron one onto neuron two. On the other
hand, since U is positive at a positive delay, it indicates a common input from a third
neuron rather than any direct connection from neuron two onto neuron one. The
method correctly identifies the circuitry of the model network even with a power law
nonlinearity.

4.2. Simulation of integrate-and-fire networks. To test the robustness of
the method to deviations from the linear-nonlinear model, we simulated a system of
integrate-and-fire neurons. In this case, we viewed each time step as corresponding to
a millisecond. The evolution of the voltage of neuron q in response to input Gq(t) is

given by τm
dVq

dt + Vq + Gq(t)(Vq − Es) = 0. The spike times T j
q of neuron q are those

times when Vq(T
j
q ) reaches 1. After each spike, the voltage was reset to 0 and held

there for an absolute refractory period of length τref . Each neuron was driven by the
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input conductance Gq(t), which we specified by

Gq(t) = 0.05
∑
j>0

f(t− T ext,j
q ) +

n∑
p=1

∑
j>0

Wpqf(t− T j
p − dpq),

where the first term is the response to external input events at times T ext,j
p and the

second term is due to internal coupling. The function f(t) = e2

4

(
t
τs

)2
e−t/τs for t > 0,

and f(t) = 0 otherwise. Here, Wpq specifies the strength of coupling from neuron p
onto neuron q, and dpq is the delay of that connection.

We set the external input to be a linear-nonlinear function of the stimulus. Ac-
cordingly, the T ext,j

q were drawn from a modulated Poisson process with rate given

by αq

[
hi
q · X

]
+
, where [x]+ = x if x > 0 and is zero otherwise.

We first simulated a network of three neurons that contained both a direct con-
nection from neuron one onto neuron two and common input from neuron three onto
neurons one and two (just as in Figure 5(B)). We used the same linear kernels (4.1)
as before, sampling them on an 80 × 10 × 10 grid in time and space. For realism, we
sampled the white noise stimulus every ten units of time (i.e., every 10 ms). We sim-
ulated the network to 5,000 simulated seconds (nearly 1.4 simulated hours), recording
30,000 to 40,000 spikes per neuron. We needed such long simulations to obtain good
results.

Figure 6(A) demonstrates that our analysis can distinguish common input from a
direct connection even with integrate-and-fire neurons. The results are equivalent to
Figure 5(B). The covariogram C show peaks corresponding to the direct connection
and the common input. The source of these correlations is distinguished by the
measures W and U . The correlation at a negative delay is identified as a direct
connection from neuron one onto neuron two; the correlation at a positive delay is
identified as common input from a third neuron.

Since the integrate-and-fire neurons are driven by the stimulus in a fairly linear
fashion, the basic relationship of neural response to the stimulus is similar to that
assumed in the linear-nonlinear model (2.1). However, unlike model (2.1), the prob-
ability of a spike does depend strongly on previous spike times. The presence of a
refractory period prevents the neuron from firing a spike immediately after spiking.
Even after the refractory period, the voltage must integrate up to threshold, fur-
ther increasing dependence among spike times. Figure 6(A) demonstrates that our
approach can still work in the presence of these deviations from model assumptions.

As a final test of our approach, we simulated a slightly larger network of 20
integrate-and-fire neurons. The network included a direct connection from neuron
one onto neuron two. In addition, four of the unmeasured neurons (neurons 3–20)
were randomly selected to give common input onto both neurons one and two, where
the connection onto neuron one had a delay that was 30 ms longer than the delay to
neuron two. In this case, the measured spike trains had a correlation at a negative
delay due to the direct connection and a correlation at a positive delay due to the
common input, just as in the previous example. We randomly added additional
connections to the network so that any given neuron had a 10% chance of connecting
onto any given unmeasured neuron.

We simulated this network to 5,000 simulated seconds (nearly 1.4 simulated
hours), measuring approximately 10,000–40,000 spikes per neuron. We discarded
the spikes of all neurons except neurons one and two. The results from analyzing
just these spikes are shown in Figure 6(B). In this case, the direct connection and
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Fig. 6. Demonstration of the results applied to networks of integrate-and fire neurons. Panels
as in the bottom panels of Figure 3. (A) Results from a simulation of three neurons with network
architecture identical to that pictured at the top of Figure 5(B). (The network contained both a
direct connection at negative delay and common input at positive delay.) The direct connection
measure W correctly identifies the direct connection from neuron one onto neuron two (appearing
with negative delay). The common input measure U correctly identifies the common input at positive
delay. Parameters: W12 = 0.1, W31 = W32 = 0.15 (all other Wpq = 0), d12 = 20 ms, d31 = 40 ms,
d32 = 10 ms, α1 = α2 = 0.25 ms−1, α3 = 0.3 ms−1, τm = 5 ms, Es = 6.5, τs = 2 ms, τref = 2 ms.
Parameters for h̄ are the same as those in Figure 3(B) except that τh = 20 ms. (B) Results
from a simulation of a random network of twenty neurons. The measure W correctly identified
the direct connection from neuron one onto neuron two at negative delay (established by setting
W12 = 0.12, d12 = 20 ms). The measure U correctly identified the common input at positive
delay. Four neurons with index p > 2 were randomly selected to give this common input. For
these p, the connection strength was randomly selected from Wp1 ∈ (0.05, 0.15), and Wp2 = Wp1.
For these four neurons, the delays were coordinated so that the delay to neuron one was 30 ms
longer: dp2 = 2 ms, dp1 = 32 ms. The remaining connections were randomly generated as follows.
For any p > 0 and q > 2, Wpq = 0 with 90% probability; otherwise the parameters Wpq and
dpq were randomly generated with Wpq ∈ (0.05, 0.15) and dpq ∈ (1, 40) ms. Parameters for h̄1

and h̄2 are as in Figure 3(A), except that τh = 20 ms and b2 = 2 ms. The remaining kernels
with p > 2 were randomly generated with ψp ∈ (0, 2π), φp ∈ (0, 2π), and fp ∈ (0.2, 1.0). We set
α1 = α2 = 0.25 ms−1 and, for p > 2, randomly generated αp ∈ (0.15, 0.3) ms−1. We set τm = 5 ms,
Es = 6.5, τs = 2 ms, and τref = 2 ms.

common input are correctly identified by the measures W and U , respectively. We
did not constrain the unmeasured neurons to be from different subpopulations than
the measured neurons. For the four common input neurons p, the maximal correla-
tion coefficient ccmax

p2 (see (2.8)) between neuron p and neuron two ranged from 0.0
to 0.7. Since the common input correlations mimicked a connection from neuron two
to neuron one, these ccmax

p2 were the critical measures for determining whether the
common input would be identified as a direct connection. The simulation indicates
that the common input neurons (at least on average) were considered to be from
subpopulations different from that of neuron two.

5. Discussion. The results demonstrate that we can correctly identify subpop-
ulation connectivity when neural response can be captured by the linear-nonlinear
model (2.1), the coupling is not too strong, and we have a lot of data. Before we focus
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Fig. 7. Schematic summary of the determination of subpopulation connectivity that we are able
to achieve. Each pictured network configuration leads to a correlation between the spikes of neuron
one and a delayed version of the spikes of neuron two. If one analyzed the joint statistics of the
spikes of neurons one and two (e.g., with a covariogram), each example would appear to involve
a direct connection from neuron two onto neuron one. (The unlabeled neuron is not measured.)
Our result is that we can distinguish (A) network configurations in the top row from (B) network
configurations in the bottom row using our analysis of the joint statistics of the stimulus and the
spikes of neurons one and two. The subpopulation of each neuron is indicated by the shading (white,
gray, or black). (A) We consider the network configurations in the top row to belong to the “direct
connection class,” as each configuration will be identified as a direct connection by our analysis. We
cannot distinguish among the configurations in the direct connection class. Nonetheless, since each
configuration contains a causal connection from neuron two’s subpopulation (white) onto neuron
one’s subpopulation (gray), our analysis can still accurately determine connectivity at the level of
subpopulations. From left to right, the configurations are a direct connection from neuron two onto
neuron one, an indirect connection through an unmeasured neuron, and common input from neuron
two’s subpopulation. (B) We consider network configurations in the bottom row to belong to the
“common input class,” as each configuration will be identified as common input by our analysis.
Since these configurations have no causal connection from neuron two’s subpopulation (white) onto
neuron one’s subpopulation (gray), it is important that our analysis can distinguish them from the
direct connection configurations (A). From left to right, the configurations are common input from
a different subpopulation (black) and common input from neuron one’s subpopulation (gray).

on the limitations caused by these conditions, we discuss the significance of subpop-
ulation connectivity and the relationship between this approach and other works.

5.1. Identification of subpopulation connectivity. Recall that two neurons
are in the same subpopulations if their effective kernels hq (defined by fitting the
uncoupled model (2.2)) are similar. In some contexts, neuroscientists would refer to
these kernels as the neurons’ receptive fields; in this case, a subpopulation would be
a group of neurons with similar receptive fields.

We have shown that common input originating from within one neuron’s sub-
population could appear like a direct connection from that neuron onto the other
measured neuron. Hence, when we identify a direct connection between neurons, we
can only conclude that there is a connection between those neurons’ subpopulations.

We summarize our conclusions in Figure 7. The direct connection measure W
and the common input measure U effectively divide network configurations into two
classes; we will call these a direct connection class and a common input class. The
top row (A) shows network configurations that would be classified as having a direct
connection from neuron two onto neuron one. Besides the actual direct connection,
this direct connection class contains an indirect connection through an unmeasured
neuron and common input from neuron two’s subpopulation. All three network con-
figurations contain a causal connection from neuron two’s subpopulation (white) onto
neuron one’s subpopulation (gray).

The bottom row (B) shows network configurations that would be classified as hav-
ing common input. When the delay onto neuron one is longer (so that the correlations
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mimic a direct connection from neuron two onto neuron one), the common input class
contains networks with common input from different subpopulations and networks
with common input from neuron one’s subpopulation. In neither of these cases is
there a connection from neuron two’s subpopulation onto neuron one. Consequently,
in order to accurately identify subpopulation connectivity, these configurations must
be distinguished from the direct connection class of the first row. We have shown
that, subject to the limitations mentioned above, we can make this distinction.

We argue that, in some experimental contexts, determining subpopulation connec-
tivity is as informative as determining the actual connectivity between two measured
neurons. In many experiments, electrodes are “blindly” inserted into the brain, and
the precise identity of measured neurons remains unknown. In this situation, neurons
are simply characterized by their response properties (e.g., their receptive fields), such
as those captured by the effective kernels hi

q.

Since the precise identify of measured neurons is unknown, the best conclusion
one can make about connectivity is that a neuron with response properties “A” is
connected to a neuron with response properties “B.” In other words, the best one can
say is that a neuron from the subpopulation characterized by response properties “A”
is connected to a neuron from the subpopulation characterized by response proper-
ties “B.” This is the best possible conclusion even if we didn’t have to worry about
ambiguity introduced by connections from unmeasured neurons. Our central result is
that we have developed an approach to achieve this best possible conclusion even in
the presence of common input from unmeasured neurons.

5.2. Precise identity of subpopulations. The above discussion assumes the
presence of discrete subpopulations. If this were the case, the statement that two neu-
rons are from the same subpopulation would be unambiguous. Of course, in general,
this is not the case. The response properties of neurons across a large population
may be better modeled as a continuum, where the correlation coefficients ccmax

pq of

(2.8) could be any value between 0 and 1. (Since cckpq tends to zero for large |k|,
the maximum is always nonnegative.) In order to make our subpopulation definition
precise, we would like to have some cutoff value of ccmax

pq , above which we could say
that neurons p and q are from the same population and below which we could say
they are from different subpopulations.

To explore this issue, we simulated the common input network of Figures 3(B) and
4 and the integrate-and-fire network of Figure 6(A), varying the model parameters
to change14 ccmax

32 . Although there was no clean cutoff, the cutoff value was around
ccmax

32 = 0.6. If ccmax
32 was near 0.6, the results were mixed, and the subpopulation of

neuron three seemed to depend on model parameters. But for larger ccmax
32 , neuron

three acted like a member of neuron two’s subpopulation because the common input
appeared as a direct connection in measure W (as in Figure 4(A)). Similarly, for ccmax

32

much smaller than 0.6, neuron three acted like a member of a different subpopulation
because the common input was correctly identified as common input (as in Figures
3(B) and 4(B)). Hence, at least for these coupling strengths and roughly equivalent
firing rates, neurons p and q were effectively in the same subpopulation when ccmax

pq

was well above 0.6. (See section 5.5 for examples of how strong coupling and disparity
in firing rates can further complicate the picture.)

14To keep the discussion as simple as possible, we ensured that the maximum of cck32 occurred

at the delay k = 2, since W̄ j
32 was maximal at j = 2. Section 3.4 shows why cc232 is the important

correlation coefficient for this case.
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5.3. Heuristic explanation for results. To provide some intuition into how
our approach successfully determines subpopulation connectivity, we give a heuristic
explanation of why one should be able to distinguish subpopulation connectivity by
analyzing the joint statistics of the measured spikes and the stimulus. We claim that
one should expect that the relationship between the measured neurons’ spikes and
the stimulus will differ between the direct connection class of Figure 7(A) and the
common input class of Figure 7(B).

For example, when the stimulus sequence happens to be optimal for neuron two
and subsequently optimal for neuron one, the effectiveness of a connection from neuron
two’s subpopulation onto neuron one’s subpopulation will be enhanced. (In this case,
a spike from neuron two’s subpopulation is likely to reach the neuron from neuron
one’s subpopulation when it is ready to fire.) Since in each network configuration
in the direct connection class (Figure 7(A)) the correlation between neuron one and
neuron two depends on a connection from neuron two’s subpopulation onto neuron
one, we expect the correlation to be especially strong for this particular stimulus
sequence.

On the other hand, we would not expect the correlations in the common input
class (Figure 7(B)) to be especially strong when the stimulus happens to be optimal
for neuron two and subsequently optimal for neuron one. None of the connections
leading to the correlation will be enhanced for this stimulus sequence, since no connec-
tion exists from neuron two’s subpopulation onto neuron one’s subpopulation. This
example of an extreme stimulus sequence illustrates one case where the joint stimulus
spike statistics will differ depending on subpopulation connectively. One might ex-
pect the differences to be evident even with other stimuli. Our results show that, at
least for a simple model, one can exploit this difference to determine subpopulation
connectivity.

5.4. Comparison to other approaches. Our approach succeeds in recon-
structing subpopulation connectivity by combining spike correlation analysis [14, 1, 13]
with white noise analysis [7, 5, 4]. It builds on previous work [10, 11] that did not
address the presence of unmeasured neurons. We have previously reported [9] on our
early attempts to address the unmeasured neurons where, since we did not require
stimulus repeats, we had to assume that all unmeasured neurons had dissimilar kernels
(effectively, that every unmeasured neuron was in its own subpopulation).

Our approach differs from the partial coherence of Rosenberg et al. [15] because
it does not require measurement of the neuron producing the common input. In
cases where one monitors multiple neurons simultaneously, partial coherence can rule
out common input from the other measured neurons without appealing to the model
assumptions underlying our analysis. Although there is a large literature in which
researchers have developed methods to reconstruct the connectivity among measured
neurons, we are unaware of others that explicitly account for unmeasured neurons.
Without accounting for unmeasured neurons, common input from unmeasured neu-
rons would be erroneously identified as a direct connection.

5.5. The weak coupling assumption. The analysis underlying the measures
W and U relied on the assumption that the coupling W̄ was small. The simulations
demonstrate that one can obtain correct results even when the coupling is not weak.
We used values of W̄ j

pq as large as 1.8 and values of
∑

j W̄
j
pq as large as 3.4. For

this parameter range, the weak coupling assumption is not justified, yet the results
successfully determined subpopulation connectivity.
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At this point, we lack an analysis of the effects of strong coupling. We have discov-
ered through simulations that violations of the weak coupling assumption can cause
invalid results when the firing rates of the two measured neurons are greatly different.
For example, if E{Ri

1} � E{Ri
2}, strong coupling can cause a direct connection from

neuron one to neuron two to appear as common input. The same situation can also
cause common input to appear as a direct connection from neuron two to neuron one.
In other words, there is a bias for a faster neuron appearing to have a connection from
a slower neuron and a bias against a slower neuron appearing to have a connection
from a faster neuron. The strength of coupling at which the misidentification occurs
depends on the degree of inequality between the firing rates.

For example, we analyzed a sequence of simulations of the direct connection of
Figure 3(A) where we increased the disparity between the firing rate of neurons one
and two. By the time neuron two fired ten times faster than neuron one, the direct
connection was misidentified as common input, and we failed to reconstruct the sub-
population connectivity. On the other hand, when we halved the strength of the direct
connection (and ran very long simulations), a direct connection was still accurately
identified even when neuron two fired more than fifty times faster than neuron one.

We also analyzed a similar sequence of simulations of the common input con-
figuration of Figure 3(B). The common input appeared as a direct connection from
neuron two onto neuron one when neuron one fired over 20 times faster than neu-
ron two. Because neuron three was not in neuron two’s subpopulation (cmax

32 < 0.2),
this misidentification is a failure in reconstructing subpopulation connectivity. When
we increased the connection strengths by 50% (adjusting kernel parameters to keep
cmax
32 < 0.2), the misidentification began when neuron one fired only eight times faster

than neuron two. (As one might infer from the observations of section 5.2, when we
changed the kernels to increase ccmax

32 , the common input was identified as a direct
connection with lower disparities in firing rate.)

5.6. Improving statistical efficiency. Our reconstruction is based on an anal-
ysis of just a few stimulus-spike moments. We employed this moment-based approach
because our intuition on such moments’ behavior could guide development of this
initial implementation of our subpopulation connectivity approach. One important
demerit of this choice was made clear in our simulations, where we needed long simula-
tions to obtain good results. To apply this approach to realistic neuroscience data, we
will presumably need more statistically efficient techniques, such as maximum like-
lihood estimators, which will yield reliable estimates of subpopulation connectivity
with less data.

5.7. Validations. Clearly, the assumptions of the analysis are idealizations that
will never be satisfied by biological neuronal networks. The approach is viable only
because accurate results can be obtained outside the strict assumptions (as demon-
strated throughout section 4). However, section 5.5 demonstrated some violations
of the assumptions that do lead to inaccurate results. Another possible source of
inaccuracies is covariation in latency or excitability, as discussed by Brody [2]. Since
such covariation is not addressed by the network model (2.1), this covariation could
invalidate our results. To address possible sources of error, we must develop valida-
tion methods that can identify critical violations of assumptions that may skew the
results. Such validations will allow one to trust that the results are accurate.

Ideally, one would like to test the accuracy of these results with in vitro exper-
iments, where the actual connectivity can be determined by other means (such as
with electrodes that enter neurons). Unfortunately, our approach depends on having
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an experimentally controlled stimulus X, where the relationship between the firing
probabilities is given by (2.1). Given that in vitro preparations are typically severed
from sensory receptors, this requirement may be difficult to achieve. A more promis-
ing testbed may be a lower organism, where the connectivity is known and neurons
can be driven by a stimulus.

5.8. Extensions to other models. The model (2.1) was made as simple as
possible to facilitate the analysis. It assumes, for example, that the response is an
approximately linear function of the stimulus, that the network is in an asynchronous
state, and that the internal dynamics of the neuron can be neglected. The results
are valid only when the network is stimulated by white noise. An extension to more
general elliptically symmetric stimuli should be possible. Since in this case, a linear-
nonlinear model can be reconstructed (see, for example, [3]), the results should be
attainable if one replaces the integration-by-parts formula (A.3) with a more general
version.

We view the implementation presented in this paper simply as an example of a
new framework of network analysis. The principle of analyzing joint input-output
statistics may be generalized to reveal pairwise coupling in other network models.
The current version should have only limited applicability to neuroscience experi-
ments because the relationship of neural response to a stimulus will in most cases be
more fundamentally nonlinear than the linear-nonlinear model (2.1). Extension of the
results to more complicated models and stimuli will increase the range of applicability,
allowing the approach to evolve into a useful tool for analyzing neuronal networks and
other stimulus-driven networks.

Appendix A. Integration-by-parts formula. In our notation, we do not
explicitly distinguish spatial versus temporal components of the stimulus, but rather
let time be represented only by the temporal index of the kernels h̄i

q and the spikes

Ri
q. We let each of the m components of X be independent standard normal variables,

so that the probability density function of X is

ρX(x) =
1

(2π)m/2
e−

‖x‖2

2 .(A.1)

To assist the reader, we derive an integration-by-parts formula (A.3), although
such a formula is not new. Let hk for k = 1, 2, . . . ,K be linearly independent unit
vectors corresponding to K kernels. We wish to compute

E{XF (h1 · X, . . . ,hK · X)},

where F is some smooth function with K arguments. Given the probability density
function (A.1) for X, this expected value is

1

(2π)m/2

∫
xF (h1 · x, . . . ,hK · x)e−

‖x‖2

2 dx.

Denote the standard unit vectors by ej , so that we can write the kernel hk and
the dot product hk · x in component form as

hk =
∑
j

hkjej and hk · x =
∑
j

hkjxj ,

where hkj is the jth component of hk.
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We calculate the components of E{XF (h1 ·X, . . . ,hK ·X)}. Through integration
by parts with respect to xj , the jth component is

E{XjF (h1 · X, . . . ,hK · X)}

=
1

(2π)m/2

∫
xjF

(∑
k

h1kxk, . . . ,
∑
k

hKkxk

)
e−

‖x‖2

2 dx

=
1

(2π)m/2

∑
i

hij

∫
Fi

(∑
k

h1kxk, . . . ,
∑
k

hKkxk

)
e−

‖x‖2

2 dx

=
∑
i

hijE{Fi(h1 · X, . . . ,hK · X)},

where Fi indicates the partial derivative of F with respect to the ith variable.

Putting the components together, we conclude that

E{XF (h1 · X, . . . ,hK · X)} =
∑
j

E{xjF (h1 · X, . . . ,hK · X)}ej

=
∑
i

E{Fi(h1 · X, . . . ,hK · X)}
(∑

j

hijej

)

=
∑
i

E{Fi(h1 · X, . . . ,hK · X)}hi.(A.2)

The special case we need for our derivation is

E{Xgp(h
i
p · X)gq(h

i−j
q · X)gr(h

i−k
r · X)}

= E{g′p(hi
p · X)gq(h

i−j
q · X)gr(h

i−k
r · X)}hi

p

+ E{gp(hi
p · X)g′q(h

i−j
q · X)gr(h

i−k
r · X)}hi−j

q

+ E{gp(hi
p · X)gq(h

i−j
q · X)g′r(h

i−k
r · X)}hi−k

r(A.3)

and the equivalent for fewer factors.

Appendix B. Equations for error function nonlinearity. The analysis
for error function ḡq(·) (see (4.2)) mirrors the derivations outlined in [11]. In this
appendix, we summarize the intermediate steps and then give the error function
result for (3.8) and (3.11).

We define the effective error function parameters (εq, yq) from the spikes of each
neuron q by fitting to these spikes the uncoupled model (2.2) with nonlinearity,

gq(y) =
1

2

[
1 + erf

(
y − yq

εq
√

2

)]
.

Denote the inner product between kernels by cos θjpq = hi
p · hi−j

q . (Note that for

Gaussian white noise cos θjpq = ccjpq; see (2.7).) Define the following expressions as
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functions of the parameters εq, yq, and cos θjpq:

δq =
1√

1 + ε2q
,

λj
qp =

δqyq − δ2
pδqyp cos θjqp√

2(1 − δ2
pδ

2
q cos2 θjqp)

,

μj
qp =

δpδq

2π
√

1 − δ2
pδ

2
q cos2 θjqp

exp

(
−
δ2
py

2
p − 2δ2

pδ
2
qypyq cos θjqp + δ2

qy
2
q

2(1 − δ2
pδ

2
q cos2 θjqp)

)
,

ξjqp =
δ2
q (1 − δ2

p cos2 θjqp)

1 − δ2
pδ

2
q cos2 θjqp

.

Define a double complementary error function

derfc(a, b, c) =
4

π

∫ ∞

a

dy e−y2

∫ ∞

b−cy√
1−c2

dz e−z2

.(B.1)

The function derfc is a two-dimensional analogue of the complementary error function
(see [10]).

Using the fact that hi
p · X and hi−j

q · X are joint unit normal random variables

with correlation cos θjqp, we compute the following expected values:

E{g′p(hi
p · X)gq(h

i−j
q · X)} =

δp

2
√

2π
exp

(
−
δ2
py

2
p

2

)
erfc(λj

qp),

E{g′p(hi
p · X)(gq(h

i−j
q · X))2} =

δp

4
√

2π
exp

(
−
δ2
py

2
p

2

)
derfc(λj

qp, λ
j
qp, ξ

j
qp),

E{g′p(hi
p · X)g′q(h

i−j
q · X)} = μj

qp,

E{g′p(hi
p · X)g′q(h

i−j
q · X)gq(h

i−j
q · X)} =

μj
qp

2
erfc

(
λj
qp(1 − ξjqp)√
1 − (ξjqp)

2

)
,

E{g′′p (hi
p · X)gq(h

i−j
q · X)} =

δ3
pyp

2
√

2π
exp

(
−
δ2
py

2
p

2

)
erfc(λj

qp) − δ2
p cos θjqpμ

j
qp,

E{g′′p (hi
p · X)(gq(h

i−j
q · X))2} =

δ3
pyp

4
√

2π
exp

(
−
δ2
py

2
p

2

)
derfc(λj

qp, λ
j
qp, ξ

j
qp)

− δ2
p cos θjqpμ

j
qp erfc

(
λj
qp(1 − ξjqp)√
1 − (ξjqp)

2

)
,

E{g′′p (hi
p · X)g′q(h

i−j
q · X)} =

δ2
p[yp − δ2

qyq cos θjqp]μ
j
qp

(1 − δ2
pδ

2
q cos2 θjqp)

.

We rewrite (3.8) and (3.11) in terms of the above quantities:

Ck
21 = Ŵ k

21

δ1

2
√

2π
exp

(
−δ2

1y
2
1

2

)[
erfc(λk

21) −
1

2
derfc(λk

21, λ
k
21, ξ

k
21)

]

+ Ŵ−k
12

δ2

2
√

2π
exp

(
−δ2

2y
2
2

2

)[
erfc(λ−k

12 ) − 1

2
derfc(λ−k

12 , λ−k
12 , ξ−k

12 )

]
+ Ûk

21μ
k
21,(B.2)



REVEALING PAIRWISE COUPLING 2031

Ak
1 = Ŵ k

21

{
δ3
1y1

2
√

2π
exp

(
−δ2

1y
2
1

2

)[
erfc(λk

21) −
1

2
derfc(λk

21, λ
k
21, ξ

k
21)

]

− δ2
1 cos θk21μ

k
21

[
1 − erfc

(
λk

21(1 − ξk21)√
1 − (ξk21)

2

)]}

+ Ŵ−k
12 μ−k

12

[
1 − erfc

(
λ−k

12 (1 − ξ−k
12 )√

1 − (ξ−k
12 )2

)]

+ Ûk
21

δ2
1 [y1 − δ2

2y2 cos θk21]μ
k
21

(1 − δ2
1δ

2
2 cos2 θk21)

,(B.3)

Ak
2 = Ŵ k

21μ
k
21

[
1 − erfc

(
λk

21(1 − ξk21)√
1 − (ξk21)

2

)]

+ Ŵ−k
12

{
δ3
2y2

2
√

2π
exp

(
−δ2

2y
2
2

2

)[
erfc(λ−k

12 ) − 1

2
derfc(λ−k

12 , λ−k
12 , ξ−k

12 )

]

− δ2
2 cos θ−k

12 μ−k
12

[
1 − erfc

(
λ−k

12 (1 − ξ−k
12 )√

1 − (ξ−k
12 )2

)]}

+ Ûk
21

δ2
2 [y2 − δ2

1y1 cos θ−k
12 ]μ−k

12

(1 − δ2
2δ

2
1 cos2 θ−k

12 )
.(B.4)

The key point of these long formulas is that, with the exception of Ŵ k
21, Ŵ

−k
12 , and

Ûk
21, all expressions are functions of the error function parameters of the measured

neurons (ε1, ε2, y1, and y2) and cos θk21 = cos θ−k
12 . The kernels (and hence cos θk21) are

computed from (3.6). The parameters εq and yq, for q = 1, 2, can be calculated from
(3.4) and (3.5) with the use of the formulas

E{gq(hi
q · X)} =

1

2
erfc

(
δqyq√

2

)
,

E{g′q(hi
q · X)} =

δq√
2π

exp

(
−
δ2
qy

2
q

2

)
.

Appendix C. Estimating confidence intervals. We estimate the confidence
interval of our measures using essentially the procedure outlined in Appendix B of
[10]. Besides changing the base variables to those needed for the current analysis,
we make the following two minor changes. First, we calculate the covariances of
inner products accurately using the covariances among all the factors in the product.
Second, since the statistics from different delays are uncoupled in our equations, we
ignore covariances among statistics from different delays.
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