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Abstract

We describe an approach for determining causal connections among nodes of a probabilistic network
even when many nodes remain unobservable. The unobservable nodes introduce ambiguity into the esti-
mate of the causal structure. However, in some experimental contexts, such as those commonly used in neu-
roscience, this ambiguity is present even without unobservable nodes. The analysis is presented in terms of a
point process model of a neuronal network, though the approach can be generalized to other contexts. The
analysis depends on the existence of a model that captures the relationship between nodal activity and a set
of measurable external variables. The mathematical framework is sufficiently general to allow a large class
of such models. The results are modestly robust to deviations from model assumptions, though additional
validation methods are needed to assess the success of the results.
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1. Introduction

In many cases where one wishes to infer the connectivity among nodes in a network, only a
small fraction of the nodes can be sampled simultaneously. For example, neuroscientists can mea-
sure the individual activity of only tens, or possibly hundreds, of neurons simultaneously, despite
the fact that the neural networks of even small areas of the brain contain millions of neurons. Sim-
ilar situations exist when studying, for example, gene networks, communication networks, or so-
cial networks. The recurring feature is the presence of large numbers of unmeasured nodes. The
effects of connections involving these unmeasured nodes can confound attempts to infer the ‘‘sub-
network’’ of connections among the measured nodes. For example, connections between a single
unmeasured node and multiple measured nodes could cause the measured nodes to appear con-
nected even if no direct connection among the measured nodes exists. The focus of this work is a
mathematical framework that can, under suitable assumptions, provide a method to control for
the effects of unmeasured nodes.

We restrict our attention to networks that can be represented as directed graphs (digraphs),
where the direction of a connection indicates a causal connection from one node to another.
We view each node as having some measurable ‘‘activity’’ (we will be more specific below). A
causal connection means the activity in one node affects the future activity of another node
(but not the reverse, unless there also happens to exist a reciprocal connection). We can hence re-
fine our goal to inferring the causal subnetwork of connections among the measured nodes (see
Fig. 1). We wish to identify the causal influences among measured nodes, distinguishing such
causal network connections from those connections involving unmeasured nodes where no such
causal influence is present. For example, in the case where a single unmeasured node has connec-
tions onto multiple measured nodes (a ‘‘common input’’ configuration, illustrated with dashed
thick lines in Fig. 1), there is no causal connection among the measured nodes. Hence, to recon-
struct the causal subnetwork among measured nodes, we must control for the possibility of com-
mon input connections from unmeasured nodes.

If measured node 1 has a causal connection onto measured node 2 (as in Fig. 1), one would
expect the connection to introduce correlations into the activity of the nodes. The activity of node
2 would be correlated with a delayed version of the activity of node 1, where the delay corresponds
to the time required for the influence of node 1’s activity to affect node 2. However, common input
connections from an unmeasured node could induce similar correlation between the measured
nodes’ activity. Consider the example from Fig. 1 where an unmeasured node has a connection
onto measured nodes 3 and 4. If the connection onto node 4 has a shorter delay than the connec-
tion onto node 3, then the activity of node 3 will be correlated with a delayed version of the activ-
ity of node 4. From observing this correlation in the activity of nodes 3 and 4, one might naively
and incorrectly conclude that node 3 received a causal connection from node 4.

This paper describes a method that can distinguish the causal subnetwork from common input
connections, subject to a certain form of ambiguity in the identity of nodes that we call ‘‘subpop-
ulation’’ ambiguity. We argue that, at least in a large number of neuroscience experiments, this
subpopulation ambiguity is already present in how nodes are identified. Hence, even without
the presence of unmeasured nodes, a determination of connectivity will be subject to this subpop-
ulation ambiguity. When our analysis can be applied, the presence of unmeasured nodes adds lit-
tle additional ambiguity to the determination of connectivity.
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Fig. 1. Extracting the causal subnetwork among measured nodes from a network containing unmeasured nodes. (A) A
sample network. Four measured nodes are illustrated by numbered circles with thick borders; unnumbered circles
correspond to unmeasured nodes. Arrows indicate the direct causal connections of the network. Our goal is to identify
the causal subnetwork among the measured nodes, illustrated with solid thick lines and depicted separately in panel (B).
(Note that if one counts arbitrarily long chains in the network, every node might have a causal connection to almost
every other node. As discussed below, since we assume the connection strength is weak, we include the effect of chains of
at most two edges.) In this example, there are causal connections of two or fewer edges from 1 to 2 and from 2 to 3. We
view longer arrows as indicating a longer delay. Hence, the common input connections from unmeasured nodes
(illustrated with dashed thick lines) could lead to the appearance as though there were causal connections from 1 to 4,
from 2 to 4 and from 4 to 3. We must control for such effects from common input to determine the causal subnetwork
among measured neurons. (B) The causal subnetwork among the measured neurons extracted from panel (A). If we
could successfully control for all common input, we would determine the absence of causal connections between neuron
4 and the other measured neurons.
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This research is motivated by neuroscience applications, and this initial formulation is designed
to be immediately applicable to neuroscience experiments. For clarity and to emphasize that some
elements of the analysis are specialized to neuroscience, we will primarily use the language of neu-
roscience, referring to the network nodes as neurons. Nonetheless, we believe the basic approach
can be generalized to have wider application.

In Section 2, we detail the subpopulation ambiguity that is present in our results. In Section 3,
we describe the model framework and the assumptions of the analysis. We present the analysis of
the model in Section 4 and derive our estimates of causal network structure. We demonstrate the
results applied to simulations in Section 5 and discuss the results in Section 6.
2. The subpopulation ambiguity

The definition of a subpopulation of neurons is based on the relationship between neural activ-
ity and any measured external variables. (A group of neurons whose activity has a similar rela-
tionship to the external variables will be considered part of the same subpopulation.) We first
describe the external variables before discussing the subpopulation ambiguity.
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2.1. Measurable external variables

Denote the vector of measurable external variables by X. These external variables will depend
on the experiment performed and the properties of the neurons being measured. The external vari-
ables can include any measurable quantity for which one can model the relationship to the activity
of neurons.

For example, if the experiment includes an animal looking at images on a computer monitor,
good representations of X would depend on the type of neurons being measured. For neurons in-
volved in low level visual processing, X could include the sequence of pixel values shown on the
monitor (Fig. 2, left). For neurons involved in higher levels of visual processing, X could be a
more abstract vector somehow indexing the images or features of the images to which the neurons
are sensitive. On the other hand, if the experiment involves animal movement, the vector X could
include animal position (Fig. 2, middle) or limb position, depending on what factors modulate the
neural response. X could also include food presentations (Fig. 2, right) or other rewards if neurons
are sensitive to such rewards.

For the mathematical analysis of this paper, the specific form of the external variables is irrel-
evant. We will simply assume the relationship between neural activity and X can be modeled and
make some basic assumptions about such a model. The main role the external variables play is in
the interpretation of the results, namely understanding the subpopulation ambiguity.

For ease in exposition, we will most frequently refer to the external variable vector as being a
representation of an image stimulus on a computer monitor (Fig. 2, left). Then, we can use the
language that neurons are ‘‘responding to’’ the stimulus and be more concrete in our description
of a subpopulation. However, we use this language solely to simplify the descriptions; all the re-
sults are valid for any type of external variable.

2.2. The idea of a subpopulation of neurons

The concept of a subpopulation is motivated by the type of experimental data available in many
neuroscience experiments. In many experiments where one monitors the electrical activity of indi-
vidual neurons in animals’ brains, the precise identity of the measured neurons remains unknown
(see Fig. 3). Researchers typically use electrodes that do not enter individual neurons. Instead,
these electrodes are simply slowly pushed into the brain until they come sufficiently close to a sin-
gle neuron so that its activity can be isolated from that of other neurons. Other than the neuron’s
X

XX

Fig. 2. Examples of measurable external variables. Left: in an experiment where an animal is looking at a computer
monitor, the external variable vector X could be the sequence of pixel values on the monitor. Middle: in an experiment
where the neural response is modulated by the position of an animal, X could include animal position. Right: if neurons
respond to reward, X could include presentation of food, such as the cheese pictured.
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Fig. 3. Illustration of the subpopulation ambiguity already present in many neuroscience experiments. Here an animal
is looking at a stimulus on a computer screen while the activity of a neuron is being recorded by an electrode (gray
pentagon). The electrode was ‘‘blindly’’ lowered into the animal’s brain and moved until the electrical activity of a single
neuron (circle) can be distinguished. The electrode does not enter the neuron, but merely happens to be sufficiently close
to the neuron so that its discrete output events, or spikes, can be detected. The information from the electrode is the
sequence of times where that neuron spiked (illustrated by sequence of vertical black bars). As the electrode does not
enter the neuron, the precise identity of the neuron is never known (illustrated by question mark). The neuron is
characterized only by the relationship between its activity (spikes) and the stimulus (or other external variables). In
other words, the neuron is identified only by its subpopulation, defined by those neurons whose activity is related to the
stimulus in the manner observed.
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general location in the brain, the only data from which to identify the neuron is the set of times in
which it emitted its discrete output events, called spikes.

As a result, neurons are identified only by the relationship between their spiking activity and the
external variables.2 We define a subpopulation to capture the essence of this characterization. If
we view the neurons as ‘‘responding to’’ the stimulus (external variables), a subpopulation can be
most simply stated as a group of neurons that respond similarly to the stimulus. (More generally,
it is a group of neurons whose activity has a similar relationship to the external variables.) The
definition of a subpopulation can be made more precise in the context of a model.

Presumably, a subpopulation will contain more than one neuron (though mathematically that
is not required). In fact, many neurons in the brain seem to respond similarly, so subpopulations
are likely to be large. Hence, any conclusions about neurons that are drawn from this type of
experimental data will inherently include this subpopulation ambiguity; any conclusion must be
interpreted in light of the fact that only the subpopulation, not the precise identity of the neuron,
can be determined.

Note that we are not introducing any assumptions about the properties of neurons when we
claim conclusions contain subpopulation ambiguity. We are simply observing the fact that ambi-
guity is introduced when one measures only spike times, and we use the term subpopulation ambi-
guity to characterize this ambiguity.
2 Moreover, different individual animals from the same species do not in general have the same set of neurons. Hence,
if one wishes to generalize beyond the individual animal being studied, the precise identity of a given neuron is not even
meaningful.
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In particular, conclusions about connectivity based on spike time measurements will also be
subject to subpopulation ambiguity. Even if we were to measure from two neurons and somehow
knew that those exact two neurons were connected, our conclusion would still contain the sub-
population ambiguity. Our best conclusion would be, for example, that a neuron with the re-
sponse properties of neuron 1 had a causal connection onto a neuron with the response
properties of neuron 2. In other words, we could simply conclude that a neuron from the subpop-
ulation of neuron 1 had a causal connection onto a neuron from the subpopulation of neuron 2.

We stress that the presence of subpopulation ambiguity in connectivity estimates does not indi-
cate that one is measuring a connection from one group of neurons (subpopulation) onto another
group of neurons (subpopulation). Nor does the ambiguity imply that all neurons in a given sub-
population have the same type of connections onto all neurons of another subpopulation. The
statement is simply that an identification of a connection between two individual neurons is sub-
ject to subpopulation ambiguity in the identity of the neurons involved.

2.3. Determining connectivity in the presence of unmeasured neurons

We demonstrated above how, given the ambiguity in much experimental data, the best one can
do is determine connectivity subject to subpopulation ambiguity, even if one did not have to con-
trol for the presence of unmeasured neurons. The essence of this paper is that we can determine
connectivity subject to subpopulation ambiguity even in the presence of unmeasured neurons.

This determination of connectivity in the presence of unmeasured neurons is possible because
we do not have to control for all types of common input connections. If the best we can do is
determine connectivity subject to subpopulation ambiguity, the identification of connectivity is
not sensitive to further ambiguity in the precise identity of neurons within a given subpopulation.
In fact, we show below that certain forms of common input can be misconstrued as a causal con-
nection without invalidating the determination of connectivity.

Consider the common input connection onto neuron 2 and neuron 4 in Fig. 4. Because we view
longer arrows as representing longer delays, the common input from the unmeasured neuron will
make the activity in neuron 4 be correlated with a delayed version of the activity in neuron 2.
Hence, the relationship between the activity of neuron 2 and neuron 4 will mimic a causal connec-
tion from neuron 2 onto neuron 4. Note that in this case, the unmeasured common input neuron
is from the subpopulation of neuron 2 (as indicated by gray shading). It is perfectly fine (given
subpopulation ambiguity) to misconstrue this common input connection as a causal connection
from neuron 2 onto neuron 4. Indeed, the correlation between the activity of neuron 2 and neuron
4 is caused (in part) by a connection from neuron 2’s subpopulation onto neuron 4. Although neu-
ron 2 itself does not have a causal connection onto neuron 4, the unmeasured neuron that does
have a causal connection onto neuron 4 is indistinguishable from neuron 2 (in experiments where
neurons are identified only by subpopulation). Little additional ambiguity3 in the conclusion
about connectivity is introduced by the fact that we cannot tell if neuron 2 itself is connected
3 The only additional ambiguity is that, when connectivity must be interpreted strictly in terms of subpopulations, we
cannot infer a causal connection from subpopulation 1 onto subpopulation 4 from the existence of both a connection
from subpopulation 1 onto subpopulation 2 and a connection from subpopulation 2 onto subpopulation 4. Compare
Fig. 4B with Fig. 4C.
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Fig. 4. Illustration of connectivity subject to subpopulation ambiguity for the network of Fig. 1. (A) The four measured
neurons (numbered) and the three unmeasured neurons giving common input connections are filled to indicate
membership in one of five subpopulations: black, gray, vertical hatched, horizontal hatched, or diagonal hatched. (The
subpopulations of the remainder of the neurons are not indicated.) Since longer arrows indicate longer delays, the
common input connections (thick dashed arrows) could be misidentified as causal connections from 1 to 4, from 2 to 4,
and from 4 to 3. To determine connectivity correctly subject to subpopulation ambiguity, we do not have to control for
all types of common input. Even if we misidentify the common input to neuron 2 and neuron 4 as a causal connection
from 2 to 4, we will still have correctly determined the connectivity subject to subpopulation ambiguity; indeed, the
common input includes a causal connection onto neuron 4 from a neuron within neuron 2’s subpopulation (thick gray-
black dashed arrow). (B) The resulting causal subnetwork in the case that the common input is misidentified as a
connection from neuron 2 to neuron 4. Note that we must interpret each connection separately in terms of
subpopulations (as in panel C) to avoid erroneous conclusions, such as the existence of a causal connection from neuron
1’s subpopulation onto neuron 4’s subpopulation. (C) The correct interpretation of the connectivity subject to
subpopulation ambiguity identified in panel (B). We have identified a causal connection from a horizontal hatched
neuron onto a gray neuron, from a gray neuron onto a black neuron and from a gray neuron onto a vertical hatched
neuron.
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to neuron 4 or if another neuron in neuron 2’s subpopulation is connected to neuron 4. We can
still infer the fact that there is an individual neuron within neuron 2’s subpopulation that is con-
nected to an individual neuron within neuron 4’s subpopulation.

In contrast, the other two common input connections must be distinguished from causal con-
nections. These common input connections induce correlations in the neurons’ activity that mimic
a causal connection from neuron 1 onto neuron 4 and from neuron 4 onto neuron 3. The corre-
lations are not caused by any causal connection from neuron’s 1 subpopulation onto neuron 4’s
subpopulation or any causal connection from neuron 4’s subpopulation onto neuron 3, respec-
tively.4 To obtain an accurate estimate of the connectivity subject to subpopulation ambiguity,
we must detect that the correlations between the activity of neuron 1 and neuron 4 and between
the activity of neuron 3 and neuron 4 are due to common input connections from unmeasured
neurons.
4 The fact that, in the second case, the common input neuron is from neuron 3’s subpopulation does not allow us to
misidentify this connection. Although there is a causal connection from neuron 3’s subpopulation onto neuron 4, the
delays are set up so that the common input mimics a causal connection from neuron 4 onto neuron 3.
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We turn now to the development of the analysis that can distinguish these latter common input
configurations from causal connections.
3. Description of the model

3.1. The model network

Our results are based on a fairly generic class of probabilistic causal network models in discrete
time. Since the measured activity of a neuron is the sequence of spike times, we model the activity
as a point process. Rather than introduce standard point process notation (see, e.g., Refs. [1,2]),
we jump immediately to the formulation in discrete time, which is all we need for our analysis.

Initially, imagine that we have discretized time sufficiently finely so that a neuron can have at
most one spike in each time bin. Then, the response of neuron s in time bin i is simply a binary
random variable Ri

s, where Ri
s ¼ 1 if neuron s spiked in time bin i and is zero otherwise.5 Let R be

the vector of the responses of all neurons for all time bins. To specify our network model, we sim-
ply need to specify PrðRi

s ¼ 1jR<i ¼ r<i;X ¼ xÞ, i.e., the probability of a spike in neuron s at time i
conditioned on the external variables X and the responses of all neurons for all time bins before i,
which we denote by R<i.

Although we are primarily interested in fine temporal discretizations where at most one spike
can occur per time bin, we will for simplicity in the form of the equations relax the assumption
that Ri

s is a binary random variable and allow multiple spikes of a neuron in a single time bin.
If we assume that neuronal responses in time bin i depend on the responses of neurons for time
bins only before i, Ri

s becomes a Poisson random variable.6 For small temporal discretizations, the
probability that Ri

s > 1 becomes vanishingly small, and the difference between the binary and
Poisson models is negligible.

We stress that we are not assuming that the responses of neurons are Poisson processes. The
response of a neuron still depends on its spike history. For sufficiently small time bins, it
approaches a generic history-dependent point process [1,2]. Hence, as long as one uses small time
bins, one can regard the use of a Poisson distribution simply as a mathematical convenience.

We write our model equation as follows. Denote by C(n,k) the Poisson distribution with mean
k:
5 Th
denot

6 Th
previo
influen
with s
Cðn; kÞ ¼ 1

n!
kne�k: ð3:1Þ
Then, for ri
s ¼ 0; 1; 2; . . ., we will model the probability that Ri

s is ri
s by Cðri

s; kÞ, where the mean
number of spikes k is a function of neurons’ previous spikes and the external variables. If
roughout this paper, we will use the subscripts p, q, and s to denote neuronal indices and the superscripts i and j to
e temporal indices.
is means, in particular, that multiple spikes of a neuron in a single time bin are independent, conditioned on the
us spikes of all neurons and the external variables. Because this is not realistic (a neuron’s spike does strongly
ce the probability that the neuron will immediately spike again), the model is a better approximation of biology

mall temporal discretizations, where the probability of multiple spikes in a time bin is vanishingly small.
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k� 1, this distribution is approximately a binary distribution, as C(0,k) � 1 � k and C(1,k) � k
(and C(n,k) � 0 for n > 1).

We assume that k, the mean of Ri
s, depends on previous spikes in the following way. To repre-

sent a direct causal connection from neuron ~s onto neuron s, let the factor �W j
~ss denote the direct

influence of the activity of neuron ~s on the activity of neuron s after a delay of j times steps. If
�W j

~ss ¼ 0 for all j, then there is no direct causal connection from ~s to s. If �W j
~ss 6¼ 0 for some

j > 0, then there is a direct causal connection from ~s to s (and we would draw an arrow from ~s
to s in the graph of Fig. 1). Note that �W could be positive or negative, and so the model can rep-
resent both excitatory and inhibitory neurons. As we will assume linear coupling, �W j

~ss is simply the
temporal kernel of the connection from ~s to s. We model the total ‘‘effect’’ of the previous spikes
of all neurons on Ri

s by
P

~s

P
j>0

�W j
~ssR

i�j
~s , where ~s ranges over the index of all neurons. (We do not

specify the total number of neurons in our notation; we assume it is some unknown finite integer.)
We write the mean of Ri

s simply as a function of the above connectivity term and the external
variables
7 Ag
condi

8 Fo
one id
spikes
k ¼ f
X

~s

X
j>0

�W j
~ssR

i�j
~s ;X; �hi

s

 !
:

Within restrictions discussed below, one can freely choose the function f (w,x;h) to model key as-
pects of how the neural response depends on the external variables (and on the input due to net-
work connectivity). The vector �hi

s denotes the parameters of the function f.
Putting this all together, the model for the probability distribution of the response of neuron s

at time i is
PrðRi
s ¼ ri

sjR<i ¼ r<i;X ¼ xÞ ¼ C ri
s; f

X
~s

X
j>0

�W j
~ssr

i�j
~s ; x; �hi

s

 ! !
: ð3:2Þ
Using Bayes’ rules and the fact that we assume the responses of all neurons at a given time step are
independent, conditioned on the spiking history,7 the probability distribution for any spike se-
quence R of the network, conditioned on the external variables, is
PrðR ¼ rjX ¼ xÞ ¼
Y

i

Y
s

PrðRi
s ¼ ri

sjR<i ¼ r<i;X ¼ xÞ

¼
Y

i

Y
s

C ri
s; f

X
~s

X
j>0

�W j
~ssr

i�j
~s ; x; �hi

s

 ! !
; ð3:3Þ
where both s and ~s range over all neuron indices and i ranges over all time points of an
experiment.8
ain, the model captures the biology better with small time bins, as the spikes of all neurons are modeled to be
tionally independent in a single time bin.
r simplicity in notation, we do not explicitly make a special case of the beginning of the experiment. In practice,
entifies a memory period over which a neuron’s response could depend on other neuron’s spikes and analyzes the
obtained after that memory period, conditioned on spikes during the memory period.
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A few additional comments are in order. First, the vector R includes the spikes of those neurons
that remain unmeasured; hence, much of R will remain unobservable. (Addressing the fact that
most of R is unknown is the entire focus of this paper.)

Second, the fact that we are modeling spiking probability conditioned on the external variables
X does not necessarily mean the neurons are responding to X, as would be the case if X were a
stimulus. X could represent a motor output that is a consequence of neural activity. Eq. (3.2)
could represent how, once we observe the motor behavior, we would model the probability dis-
tribution of the neural activity that previously took place.

Third, the structure of the problem would be unchanged if we replaced the probability distri-
bution C(n,k) with another (continuous or discrete) probability distribution. In this case, the mod-
el would not represent a point process of neural spikes but could represent the activity of nodes in
another type of network. At least in principle, one should be able to perform the subsequent anal-
ysis with other probability distributions, allowing the results to be applied to other networks.

Fourth, note that all model parameters in Eq. (3.3) (meaning �W and �h) have bars over them. In
the subsequent model analysis, we assume that the actual probability distribution of the R is
determined by these model parameters through Eq. (3.3). Since many neurons are unmeasured,
we will be unable to recover these parameters exactly. We will reserve unbarred model parameters
to denote the effective parameters that we will be able to calculate from the response of measured
neurons. In fact, the ability to calculate an effective h will be the key assumption restricting the
choice of model function f, as discussed in the following section.

3.2. Restrictions of model choice

Our analysis approach is to completely separate the single neuron analysis from the network
analysis (i.e., we employ a modular approach to attacking the problem of network connectivity).
In the framework of model (3.2) (which is the essence of Eq. (3.3)), all the single neuron properties
are embedded in the model function f. Hence, choosing an appropriate f is primarily a problem in
modeling a single neuron (the only network aspect of f itself is the single scalar argument for the
coupling term). For the network analysis that is the focus of this paper, the details of f will be
irrelevant. We assume an appropriate f has been chosen that has the required properties outlined
as follows.

The important restriction on the choice of model function f is that one must have an algorithm
for determining the ‘‘effective parameters’’ of f from measured spikes of a single neuron when all
coupling is ignored. In particular, we assume the existence of an algorithm that can determine the
effective parameters, denoted by an unbarred h, by fitting the equation
PrðRi
s ¼ ri

sjX ¼ xÞ ¼ Cðri
s; f ð0;x; hi

sÞÞ: ð3:4Þ

Of course, for the results of the analysis to be valid, the function f and the algorithm for effective
parameters h must be chosen so that Eq. (3.4) captures critical elements of how the neural re-
sponse depends on the external variables X. Devising a good form of f and concomitant fitting
algorithm is a difficult problem and outside the scope of this paper. As we demonstrate with sim-
ulation results, the approach can be robust to some deviations from the model f but can also fail
due to such deviations. One advantage of the modular approach is that once one develops a model
and fitting algorithm, one can immediately use that model with this network approach.
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We emphasize that this fitting procedure is a single neuron task, as this step uses just the spikes
of neuron s, ignoring the spikes of all other neurons. By setting the first argument of f to zero
before determining hi

s, we effectively pretend that neuron s is uncoupled from all other neurons.
Since, by assumption, the spikes Ri

s were really generated by Eq. (3.2), the response of neuron s
is actually determined by the responses of other neurons and the connectivity. The effective hi

s will
consequently depend not only on the original model parameters �hi

s, but also on the connectivity
parameters �W and the parameters of other neurons. We refer to Eq. (3.4) as the averaged model,
as we are essentially averaging over all the responses of all other neurons, as discussed below.

The notation of the averaged model (3.4) allows an arbitrary dependence of the effective param-
eter hi

s on time i, leading to the appearance that the hi
s could be independent of each other. Pre-

sumably, to obtain good estimates of the hi
s from a single observation of each Ri

s, one must impose
strong dependence among the hi

s for nearby i. As this paper focuses on network issues, we simply
assume that any such single neuron model requirements have been satisfied. In our examples, we
limit ourselves to models where hi

s for all i are functions of a single hs (see Section 5.2). In prin-
ciple, one could use models that include adaptation and other factors that allow the model param-
eters to significantly change over time.

For the rest of the paper, we will assume that, for the measured neurons, the hi
s are known

parameters. Note that this assumption means that we can calculate f ðw;x; hi
sÞ for any value of

w and any time point i. This assumption restricts how one might add coupling to a model. The
dependence on the coupling argument w must be chosen so that, from only the spikes of neuron
s itself, one must be able to estimate any parameters required to calculate the effect of nonzero w
on f. We also assume that f ðw; x; hi

sÞ is twice continuously differentiable in w. We let 0 denote dif-
ferentiation with respect to the first argument of f, so that the first and second derivatives of f with
respect to w are f 0ðw;x; hi

sÞ and f 00ðw;x; hi
sÞ. The above assumptions imply that we can calculate

these derivatives after we determine hi
s and that the derivatives of f (w,x;h) with respect to w are

equivalent to derivatives with respect to some function of x and h.

3.3. The weak coupling assumption

Model (3.3) includes the effects of arbitrary combinations of indefinitely long chains of network
connections. To reduce the lengths of chains we need to consider, we make a weak coupling
assumption by treating the coupling �W as a small parameter. In our analysis, we simply make
a second-order approximation in �W , expanding Eq. (3.3) in linear and quadratic powers of the
�W j

~ss. (Recall, we assume f is C2 as a function of the argument where the �W j
~ss appear, so the error

in this approximation is Oð �W 3Þ.)
However, such an argument does not fully elucidate the consequences of our weak coupling

assumption. There are important consequences in the scaling of coupling strength with network
size, the identity of the neurons that appear in Eq. (3.3), and possible network topologies that are
considered in the analysis.

First, the analysis is designed to be applied to large networks, such as the brain’s neural net-
works. For this reason, we briefly examine the consequences of the weak coupling in the large
N limit, where N is the (unknown) number of neurons. Assuming sufficient derivatives of f, if
we expanded Eq. (3.3) in higher-orders of �W , we would obtain terms that are kth order in �W
summed over all nodes of the network k times. To neglect such terms, we need the sum of �W over
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the network to be a small parameter. In other words, in the large N limit, we need the average
value of �W to scale like 1/N. (As this scaling law pertains only to the average �W , all �W j

~ss do
not need to uniformly scale like 1/N.)

Second, the weak coupling assumption implies that the individual neurons of Eq. (3.3) must
represent lumped models that already incorporate effects of other neurons projecting to them.
When we expand in �W , we view the terms with �W as perturbations off the uncoupled probability
with mean f ð0;X; �hi

sÞ. Since this uncoupled probability is, by assumption, the largest term, either
the neuron responds only weakly to the external variables (in which case the analysis would not
work well) or the uncoupled model must have a strong dependence on X. The relationship be-
tween the external variables and the response of most neurons is established through connections
via other neurons. Hence, the uncoupled model already includes effects of connections from other
neurons (i.e., is a lumped model of the effects of all these neurons). The weak connections that we
include in Eq. (3.3) simply modulate the neural response around the baseline response that is cap-
tured by the lumped model.

This interpretation of the uncoupled models as lumped models mitigates some of the strength of
the scaling assumption. Eq. (3.3) does not need to explicitly include all neurons in a particular
neural network, in which case the large N limit is less important. In fact, our results can be viewed
as simply fitting small networks to the measured neuron data. However, for ease of exposition, we
adhere to the interpretation of a large network throughout this paper, as this is the way we typ-
ically motivate the analysis.

The third consequence of the weak coupling assumption is that it greatly simplifies the network
topology. We no longer have to consider the directed graph (digraph) of the network in its entire-
ty. We can consider separately each subgraph that is a (not necessarily connected) digraph of one
or two edges. Because the following analysis is based on the weak coupling assumption, we can
simply analyze the effects of all possible digraphs of one or two edges and sum them up. In this
way, we view the large digraph of the entire network as being approximated by a superposition of
such smaller digraphs (see Fig. 5). Moreover, we seek to derive an expression for the activity of
only the measured neurons, and the activity of the measured neurons is affected only by those di-
graphs that project onto measured nodes (we will confirm this intuitive claim with analysis).
Hence, it turns out that we need to concern ourselves only with those digraphs in which each node
has a directed path toward a measured node (such as all the digraphs highlighted in Fig. 5).

Since we effectively replace the original digraph with a superposition of these small digraphs, we
can ignore the effects of long network chains. (This is our justification for including only paths of
two or fewer edges in our illustration of the causal subnetwork in Fig. 1.) One important conse-
quence is that we can focus on the case where there are only two measured nodes. No digraph of
two or fewer edges involving unmeasured nodes can introduce correlations among three or more
measured node. (Any connected component of a graph with two edges has at most three nodes.)
Hence, all the interesting effects of unmeasured nodes occur already with just two measured
nodes. We do perform the analysis for an arbitrary number of measured nodes, but all our intu-
itive explanations and examples will involve only two measured nodes.

In principle, one can analyze higher-order expansions. Unfortunately, the number of digraphs
one needs to examine increases exponentially with the number of edges (i.e., the order of the
expansion).
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Fig. 5. An illustration of the decomposition of the directed graph (digraph) from Fig. 1 into a superposition of digraphs
of two or fewer edges. This decomposition is a consequence of our weak coupling assumption. Each panel depicts a
digraph (thick arrows) that corresponds to a single term in the expansion of model (3.3) in �W . Although not shown, the
expansion of model (3.3) does include digraphs that do not project to the measured nodes (numbered circles). However,
since the effects of such digraphs do not influence the measured nodes and drop from our analysis, we show examples
only of those digraphs where each node has a directed connection (of one or two edges) to a measured node. To allow a
direct mapping between the digraphs and the terms of the expansion in �W , we must include digraphs of a single edge
counted twice (not shown). In our analysis, the full digraph is effectively replaced by a superposition of such smaller
digraphs. Note that each causal connection or common input connection highlighted in Fig. 1 can be represented as one
of these smaller digraphs.

216 D.Q. Nykamp / Mathematical Biosciences 205 (2007) 204–251
4. Analysis of model network

We seek to develop a method to determine the connectivity among measured neurons under the
assumption that the activity of all neurons was generated according to the network model (3.3).
The presence of unmeasured neurons will prevent us from completely succeeding, as our connec-
tivity estimates will be subject to the subpopulation ambiguity discussed in Section 2.

We divide the set of all neural indices into two non-overlapping sets: Q containing the indices of
measured neurons and P containing indices of unmeasured neurons (clearly Q [P is the set of all
neural indices). Our task is to approximate the connectivity kernels �W j

q1q2
for q1; q2 2 Q from the

measured spikes RQ (the subset of R containing the responses of measured neurons) and the exter-
nal variables X.
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We proceed in three basic steps. First, we analyze the responses of an individual neuron to de-
rive an expression for the effective parameters hi

s (of the averaged model (3.4)) in terms of the ori-
ginal model parameters (of the network model (3.3)). Second, starting with the network model
(3.3), we derive an expression for the probability of any observed sequence of measured neuron
spikes, writing everything in terms of the effective parameters. Third, by allowing subpopulation
ambiguity (Section 2), we can isolate the effect of common input from unmeasured neurons and
develop a maximum likelihood estimator of the connectivity kernels �W j

q1q2
.

4.1. Individual neuron analysis

When one measures from a single neuron of the brain and fits a model such as (3.4) (i.e., ignores
the spikes of all other neurons), one is effectively averaging over the activity of all other neurons.
In this section, we explicitly compute this average under the assumption that the neurons’ spikes
were actually generated by the network model (3.3). The result of this process will be an expres-
sion for the effective parameters h defined in the averaged model (3.4) in terms of the original
model parameters �h and �W .

Recall from Section 3.2 that we assume the existence of an algorithm to determine the hi
s

from the responses of neuron s and the external variables X. Hence, for measured neuron
q 2 Q, we can view f ð0;x; hi

qÞ (and the derivatives f 0ð0;x; hi
qÞ and f 00ð0; x; hi

qÞ) as known
quantities. Once we have derived expressions for the original model parameters in terms
of the effective parameters, we will be able to rewrite the network model (3.3) in terms of
the effective parameters.

Although we do not know hi
p for unmeasured neuron p 2 P, our network analysis will

turn out to be simpler if we write expressions involving the original model parameters �hi
p

in terms of the (unknown) effective parameters hi
p. Hence, in this section we do not need

to distinguish measured from unmeasured neurons and will analyze the response of neuron
s 2 Q [P.

The averaged model (3.4) is simply the network model (3.3) averaged over all time steps and all
but one neural response:
PrðRi1
s1
¼ ri1

s1
jX ¼ xÞ ¼

X
r

r
i1
s1

fixed

PrðR ¼ rjX ¼ xÞ: ð4:1Þ
Here, we are summing over all (infinite) possibilities of spike combinations R of the entire net-
work, subject only to the restriction that Ri1

s1
is fixed at the value ri1

s1
. We substitute in the structure

of the model network (3.3):
PrðRi1
s1
¼ ri1

s1
jX ¼ xÞ ¼

X
r

r
i1
s1

fixed

Y
i2

Y
s2

C ri2
s2
; f

X
~s

X
j>0

�W j
~ss2

ri2�j
~s ;x; �hi2

s2

 ! !
: ð4:2Þ
Note that all products and sums involving forms of s are implicitly taken over all the indices in the
network Q [P.

We define the following shorthand notation:
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�Ci
s ¼Cðri

s; f ð0; x; �hi
sÞÞ;

o�Ci
s ¼

o

ow
Cðri

s; f ðw; x; �hi
sÞÞ
����

w¼0

;

o2 �Ci
s ¼

o2

ow2
Cðri

s; f ðw;x; �hi
sÞÞ
����
w¼0

: ð4:3Þ
(Note the bars to indicate these expressions contain the original model parameters �hi
s.) Also, to

simplify notation, we define �W j
~ss ¼ 0 for j 6 0 so that we do not have to restrict the sum over j

to positive j. Because of this simplification, the causal structure of the network connections is
no longer made explicit in the notation. Nonetheless, the causality of the connections will remain
an important restriction.

As described in Appendix A, we take the second-order Taylor series of (4.2) in �W . Once we have
done that, we can explicitly compute the average over all r, as each ri

s appears in the equation in a
simple manner. This procedure requires that one enumerates all the possible digraphs that corre-
spond to each term in the Taylor series. Most of these digraphs disappear in the averaging pro-
cess. After averaging, one obtains the following expression for the activity of neuron s1 at time i1:
PrðRi1
s1
¼ ri1

s1
jX ¼ xÞ ¼ �Ci1

s1
þ
X

s2

X
j2

�W j2
s2s1

f ð0; x; �hi1�j2
s2
Þo�Ci1

s1

þ 1

2

X
s2

X
j2

ð �W j2
s2s1
Þ2f ð0; x; �hi1�j2

s2
Þo2 �Ci1

s1

þ 1

2

X
s2;s3

X
j2;j3

�W j2
s2s1

�W j3
s3s1

f ð0;x; �hi1�j2
s2
Þf ð0;x; �hi1�j3

s3
Þo2 �Ci1

s1

þ
X
s3;s2

X
j2;j3

�W j2
s2s3

�W j3
s3s1

f ð0;x; �hi1�j3�j2
s2

Þf 0ð0; x; �hi1�j3
s3
Þo�Ci1

s1

þOð �W 3Þ:

ð4:4Þ
The sum in the first line corresponds to a single connection onto neuron s1. The second and third
lines correspond to two connections onto neuron s1. The last line corresponds to a path of two
connections onto neuron s1. Since there is no restriction on the identities of neurons s3 and s2, they
could be identical to each other or neuron s1, corresponding to loops in the network. Fig. 6 illus-
trates the digraphs included in Eq. (4.4).

According to the averaged model (3.4), this expression should be equal to Cðri1
s1
; f ð0; x; hi1

s1
ÞÞ.

However, the right-hand side of Eq. (4.4) is not quite a second-order approximation to a Poisson
distribution.9 Nonetheless, if we fit PrðRi1

s1
¼ ri1

s1
jX ¼ xÞ ¼ Cðri1

s1
; f ð0;x; hi1

s1
ÞÞ, the right-hand side of

Eq. (4.4) is our best approximation to Cðri1
s1
; f ð0;x; hi1

s1
ÞÞ.

In parallel to the definition of the �Ci
s in Eq. (4.3), we define corresponding notation for unbarred

Ci
s:
e right-hand side of Eq. (4.4) is almost a second-order approximation to a Poisson distribution. A brief
ation shows that the only deviation is the presence of the term with o2Cðn;kÞ

ok2 that is hidden in the ð �W j2
s2s1
Þ2 term.
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Fig. 6. Illustration of the digraphs of two or fewer edges that influence the response of a single node. This is an
exhaustive list of digraphs of two or fewer edges where each node has a directed path toward node 1. In each
panel, the left digraphs are special cases of the rightmost digraph with some nodes being identified with each other.
These digraphs correspond to the lines in Eq. (4.4), where the neuron with index s1 corresponds to node 1. Each
line in (4.4) corresponds to multiple digraphs, as indices s3 and s2 could be equal to each other or to s1. Also, a
digraph could appear in multiple terms since these representations ignore the temporal component. (A) Digraphs
corresponding to the sum from the first line of (4.4). The first digraph is the case s2 = s1. (B) Digraphs
corresponding to the second and third line of (4.4). The second line contains only the first two digraphs, but these
digraphs are repeated in the third line. (C) Digraphs corresponding to the fourth line of (4.4). Note that the first
and third digraphs are equivalent to the first and third digraphs in B. The fact that these digraphs appear twice
illustrates some of the subtlety in the correspondence between digraph structure and network behavior. Panel (B)
represents the effect of simultaneous inputs reaching node 1. Panel (C) represents the effect of a chain of length two
reaching node 1. For example, the first digraph in panel (B) corresponds to the second-order effects of inputs
reaching node 1 and can be viewed as double-counting a single connection. The first digraph in panel (C)
corresponds to the loop of the second digraph in panel (C) specialized to the case when the two nodes are
identified with each other. The first digraph in panel (C) represents, for example, how a spike in neuron 1 can
cause a second spike in neuron 1, which in turn influences the later spiking probability of neuron 1.
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Ci
s ¼Cðri

s; f ð0;x; hi
sÞÞ;

oCi
s ¼

o

ow
Cðri

s; f ðw;x; hi
sÞÞjw¼0;

o2Ci
s ¼

o2

ow2
Cðri

s; f ðw; x; hi
sÞÞjw¼0: ð4:5Þ
Then, as described in Appendix A, we can derive the following equations for expressions involving
the original barred parameters written in terms of the effective parameters:
�Ci
s ¼ Ci

s �
X

s2

X
j2

�W j2
s2sf ð0;x; hi�j2

s2
ÞoCi

s

� 1

2

X
s2

X
j2

ð �W j2
s2sÞ

2f ð0; x; hi�j2
s2
Þo2Ci

s

þ 1

2

X
s2;s3

X
j2;j3

�W j2
s2s

�W j3
s3sf ð0; x; hi�j2

s2
Þf ð0; x; hi�j3

s3
Þo2Ci

s þOð �W 3Þ; ð4:6aÞ

o�Ci
s ¼ oCi

s �
X

s2

X
j2

�W j2
s2sf ð0; x; hi�j2

s2
Þo2Ci

s þOð �W 2Þ; ð4:6bÞ
o
2 �Ci

s ¼ o
2Ci

s þOð �W Þ; ð4:6cÞ
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Fig. 7. Illustration of the averaged model of a single neuron. The averaged model (square on the right labeled by 1)
includes the effect of the entire network pictured at the left on the response of a single neuron (circle labeled by 1). The
averaged model is an average over the activity of the entire network, although, due to the weak coupling assumption,
the eff
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f ð0;x; �hi
sÞ ¼ f ð0; x; hi

sÞ �
X

s2

X
j2

�W j2
s2sf ð0;x; hi�j2

s2
Þf 0ð0; x; hi

sÞ þOð �W 2Þ ð4:6dÞ

f 0ð0;x; �hi
sÞ ¼ f 0ð0;x; hi

sÞ �
X

s2

X
j2

�W j2
s2sf ð0;x; hi�j2

s2
Þf 00ð0; x; hi

sÞ þOð �W 2Þ ð4:6eÞ

ect of most neurons averages away.
f 00ð0;x; �hi
sÞ ¼ f 00ð0;x; hi

sÞ þOð �W Þ ð4:6fÞ
We refer to Eqs. (4.6) as the effective parameter equations (4.6). We will use them repeatedly to
write expressions in terms of effective parameters.

To convert to effective parameters, we averaged over the activity of the entire network (subject
to the weak coupling assumption) in order to represent the response of a single neuron using the
averaged model (3.4). Graphically, this corresponds to reducing the effect of the entire network
into a single averaged model, as illustrated in Fig. 7. The averaged model captures how the re-
sponse of the neuron is related to the external variables and will be used to define subpopulations
of neurons below.

As illustrated by Fig. 7, using effective parameters greatly simplifies the representation of the
neural response. In the network analysis of the next section, connections onto just a single neuron
will be absorbed into the effective parameters of that neuron, and we will be left with only those
connections that introduce correlations among measured neurons. Such simplifications are one
reason we convert everything to effective parameters, even for unmeasured neurons where the
effective parameters are not known.10

4.2. Network analysis

In this second step of analysis, we derive an expression for the probability of any observed se-
quence of measured neuron spikes. We obtain this expression by averaging the network model
is simplification due to effective parameters was already evident in the first effective parameter equation (4.6a)
where there is no direct representation of the digraphs containing a path with two edges leading to neuron s

6C). The effect of such paths is included in the effective parameters of neuron s2 in the first line of (4.6a).
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(3.3) over the spikes of all unmeasured neurons, invoking the weak coupling assumption, and
using the effective parameter equation (4.6) to write everything in terms of effective parameters.

We denote by RQ the responses of the measured neurons and by RP the responses of the unmea-
sured neurons. To find the probability of observing a sequence rQ of measured neuron spikes, we
average the network model Eq. (3.3) over all possible values of RP, denoted by a sum over rP:
PrðRQ ¼ rQjX ¼ xÞ ¼
X

rP

PrðR ¼ rjX ¼ xÞ

¼
X

rP

Y
i

Y
s

C ri
s; f

X
~s

X
j>0

�W j
~ssr

i�j
~s ; x; �hi

s

 ! !
: ð4:7Þ
We proceed in a manner similar to the single neuron analysis. As described in Appendix B, we
expand Eq. (4.7) in a Taylor series to second-order in �W . Then, we enumerate all the digraphs
that correspond to each term in the Taylor series, separating out all possible combinations of ef-
fects from unmeasured neurons. Once we average over all possible unmeasured neuron activity
and use the effective parameter equation (4.6) to write everything in terms of the effective param-
eters, the resulting equation simplifies to
PrðRQ ¼ rQjX ¼ xÞ ¼ Cþ
X

q1;q22Q

X
i1;j1

�W j1
q2q1

ri1�j1
q2
� f ð0; x; hi1�j1

q2
Þ

h i
o

W
i1
q1

C

� 1

2

X
q1;q22Q

X
i1;j1

ð �W j1
q2q1
Þ2f ð0; x; hi1�j1

q2
Þo

W
i1
q1

o
W

i1
q1
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þ 1

2

X
q1;q2;q3;q42Q

X
i1;j1
i2;j2

�W j1
q2q1

�W j2
q4q3

ri1�j1
q2
� f ð0;x; hi1�j1

q2
Þ

h i
ri1�j2

q4
� f ð0;x; hi1�j2

q4
Þ

h i
o

W
i1
q1

o
W

i2
q3

C

þ 1

2

X
q1;q22Q

X
p12P

X
i1;j1;j2

ðq2;j2Þ6¼ðq1;j1Þ

�W j1
p1q1

�W j2
p1q2

f ð0;x; hi1
p1
Þo

W
i1þj1
q1

o
W

i1þj2
q2

C

þ
X

q1;q22Q

X
p12P

X
i1;j1;j2

�W j2
q2p1

�W j1
p1q1

ri1�j1�j2
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� f ð0;x; hi1�j1�j2
q2

Þ
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C

þOð �W 3Þ;
ð4:8Þ
where we have defined the following notation
C ¼
Y
q2Q

Y
i

Cðri
q; f ð0; x; hi

qÞÞ;

o
W

i1
q1

C ¼ o

oW i1
q1

Y
q22Q

Y
i2

Cðri2
q2
; f ðW i2

q2
;x; hi2

q2
ÞÞ

" #
W¼O

; ð4:9Þ

o
W

i1
q1

o
W

i2
q2

C ¼ o2

oW i1
q1
oW i2

q2

Y
q32Q

Y
i3

Cðri3
q3
; f ðW i3

q3
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q3
ÞÞ

" #
W¼O
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As before, we do not explicitly denote the causality of the connections, but implicitly assume that
all �W j

s1s2
¼ 0 for j 6 0.

Because we have written everything in terms of effective parameters, only those few digraphs
that introduce correlations among measured neurons remain in Eq. (4.8) (see Fig. 8). The first
three lines of (4.8) contain the effects of connections among the measured neurons themselves
(Fig. 8A). The last two lines contain the two types of effects from unmeasured neurons that
can be mediated through digraphs of two or fewer edges: common input from a single unmea-
sured neuron (Fig. 8B) and a connection between measured neurons via a single unmeasured neu-
ron (Fig. 8C).

The transformation to effective parameters greatly simplified the network. Compared to the
huge number of digraphs we had before converting to effective parameters (see Eq. (B.3) of
Appendix B), we are left with just a few. As illustrated in Fig. 9, we have extracted out an effective
network that contains the causal subnetwork among the measured neurons as well the common
input connections that we highlighted in Fig. 1.

Despite the simplifications, it may still not be evident that we have actually made progress to-
ward our ultimate goal of determining the causal subnetwork among the measured neurons. We
still have not controlled for the effects of common input from unmeasured neurons. Only after we
allow for subpopulation ambiguity we will be able to separate the effects due to common input
from the effects due to the causal subnetwork.

4.3. Allowing subpopulation ambiguity

In this third step of the analysis, we will finally estimate the causal subnetwork, though it will be
subject to subpopulation ambiguity discussed in Section 2. We accomplish this goal by analyzing
separately two cases. First, we analyze the (unrealistic) case where all unmeasured neurons are
from different subpopulations than the measured neurons. In this first case, we can determine
the causal subnetwork without any subpopulation ambiguity. In the second (realistic) case, we
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Fig. 8. Illustration of the digraphs of two or fewer edges that remain in our network analysis. Numbered circles
correspond to measured nodes; unnumbered circles correspond to unmeasured nodes. (A) The only digraphs of one
edge are connections between measured nodes, either a connection between a pair of distinct nodes or a connection
from a node onto itself. These digraphs correspond to the sum in the first line of Eq. (4.8). We do not show the digraphs
of two edges involving only measured nodes, which correspond to the second and third lines of Eq. (4.8). (B) Digraphs
involving common input from a single unmeasured node onto one or two measured nodes, corresponding to the fourth
line of Eq. (4.8). (C) Digraph involving a directed path of two edges between measured nodes via a single unmeasured
node (from the last line of (4.8)). These digraphs are similar to those of panel (A), except for the presence of the
intermediate unmeasured node.
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Fig. 9. Illustration of the effective network involving the measured nodes. By averaging over the activity of all
unmeasured nodes and then using the averaged model (squares) represented in Fig. 7, we simplify the network into the
effective network containing connections that introduce correlations among the measured nodes. The left panel is Fig. 1,
and the right panel is the simplification of the network represented by Eq. (4.8). Numbered circles or squares represent
measured nodes; unnumbered circles or squares represent unmeasured nodes. As in Fig. 1, thick solid lines indicate the
causal subnetwork among measured nodes and thick dashed lines indicate common input from unmeasured nodes.
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do not restrict the subpopulation of unmeasured neurons. In this second case, we can still deter-
mine the causal subnetwork, but only with the subpopulation ambiguity. But before looking at
either case, we need to define a subpopulation in the context of our model.

4.3.1. Subpopulation definition
As described in Section 2.2, a subpopulation can be thought of as a group of neurons whose

activity has a similar relationship to the external variables. The relationship between a neuron’s
activity and the external variables is captured by the averaged model (3.4). Roughly speaking,
two neurons are in the same subpopulation if they have similar effective parameters.

We first outline an effective definition of a subpopulation. This effective definition will be a
more relaxed definition than required for the analysis, as described below. We fix a delay j and
look at the response of neuron s1 (Ri

s1
) and the response of neuron s2 from j time steps previous

(Ri�j
s2

). According to the averaged model (3.4), the expressions f ð0;X; hi
s1
Þ and f ð0;X; hi�j

s2
Þ are the

expected values of the random variables Ri
s1

and Ri�j
s2

conditioned on the external variables X. The
expected values themselves, though, vary as a function of time bin i. If f ð0;X; hi

s1
Þ and f ð0;X; hi�j

s2
Þ

are highly positively correlated across time, then both neurons’ responses have a similar relation-
ship to the external variables and the neurons are from the same subpopulation (when viewed at
delay j). If the correlation is small or negative, the neurons are from different subpopulations.

To write an expression for this correlation, we first define the average of f over time, condi-
tioned on X = x, as
ls1
¼ hf ð0;x; hi

s1
Þi ¼ 1

M

X
i

f ð0; x; hi
s1
Þ; ð4:10Þ
where the sum is over all time bins and M is the total number of time bins. Similarly, we define a
variance and covariance
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varðs1Þ ¼hf ð0; x; hi
s1
Þ2i � l2

s1
¼ 1

M

X
i

f ð0; x; hi
s1
Þ2 � l2

s1
;

covðs1; s2; jÞ ¼hf ð0; x; hi
s1
Þf ð0;x; hi�j

s2
Þi � ls1

ls2
ð4:11Þ

¼ 1

M

X
i

f ð0; x; hi
s1
Þf ð0; x; hi�j

s2
Þ � ls1

ls2
:

We base our relaxed definition of subpopulation on the correlation coefficient
ccj
s1s2
¼ covðs1; s2; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðs1Þvarðs2Þ
p : ð4:12Þ
Note that �1 6 ccj
s1s2
6 1. If ccj

s1s2
is large (near 1), then neurons s1 and s2 are from the same sub-

population when viewed at the delay j. Otherwise, neurons s1 and s2 are from different subpopu-
lations when viewed at the delay j. Note that one can view the correlation coefficient (4.12) as a
measure of similarity between the effective parameters of neurons s1 and s2.

To work through the analysis, we need a more stringent definition of different subpopulations.
If we assume neurons s1 and s2 are from different subpopulations when viewed at the delay j, we
will assume that to Oð �W Þ, the averaged model f ð0;X; hi

s1
Þ and its derivatives are independent from

f ð0;X; hi�j
s2
Þ and its derivatives. For functions (or derivatives) F and G, we will assume
F f 0; x; hi
s1

� �� �
G f 0;x; hi�j

s2

� �� �D E
¼ F f 0; x; hi

s1

� �� �D E
G f 0; x; hi�j

s2

� �� �D E
ð4:13Þ
in terms that are second-order in �W .
Despite the fact that the analysis uses this stringent definition, the more relaxed definition based

on correlation coefficients is easier to quantify and better reflects the effective grouping of neurons
into subpopulations that we see in simulations. For example, we find that neurons with a negative
correlation coefficient are still effectively from different subpopulations, despite not being indepen-
dent in the sense required for the analysis. For simplicity of discussion, we use the language of
subpopulations as being discrete entities, though in fact there is a gray area of intermediate values
of cj

s1s2
where results are mixed. See Ref. [3] for a further discussion on the precise identity of sub-

populations in the context of a former approach. The general results hold for the new approach
presented here.

We stress that, since subpopulations are based on the averaged model, their definition does include
the average effect of connections from other neurons. A neuron’s subpopulation is determined by its
effective parameters. Connections from other neurons will change the relationship between a neu-
ron’s activity and the external variables, and hence will change that neuron’s effective parameters.
Nonetheless, even if neurons s1 and s2 are connected, the correlation coefficient (4.12) does not in-
clude the precise correlations in individual spikes that are due to that connection.

4.3.2. Different subpopulation case
We first look at the case when all unmeasured neurons are from different subpopulations. This

will allow us to simplify the two lines of Eq. (4.8) involving unmeasured neurons.
We detail this process for the common input term (second-to-last line of (4.8)). Using the nota-

tion of the previous section, we write the sum over i1 as M times the expected value hÆi. Then, we
invoke our subpopulation assumption by using Eq. (4.13):
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In the last step, we removed the i1 from hi1
p1

to stress that the averaged quantity does not de-
pend on i1.

We perform the same manipulations on the last line of Eq. (4.8), allowing us to rewrite Eq. (4.8)
as
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The key result is that, since we replaced the unmeasured neuron factors with their temporal aver-
ages, these factors no longer depend on i1. This allows us to group all the effects due to common
input from unmeasured neurons into a single factor. Furthermore, the indirect causal path from
q2 to q1 via unmeasured p1 (last line of (4.14)) is now in the same form as the direct causal con-
nection from q2 to q1 (first line).

We define the effective causal connection factor W and effective common input factor U
by11
te that this definition introduces arbitrary asymmetry into the definition of U0
q1q2

since the ordering of the neuron
s q1 and q2 is arbitrary.
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W j1
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¼ �W j1
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p12P

X
j2
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p12P

P
j2

�W j2
p1q2

�W j1þj2
p1q1
hf ð0; x; hp1
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hf ð0;x; hp1

Þi for j1 ¼ 0 and q2 < q1;

0 otherwise:

8>>><
>>>:

ð4:15Þ
We substitute these expressions into Eq. (4.14). Combining the first and last sums is equivalent to
replacing �W in the first sum by the effective W of Eq. (4.15). The common input effects of the sec-
ond-to-last line can be written in terms of U. (We wrote the sum for j1 5 0 as twice the sum for
j1 > 0.) Since W ¼ �W þOð �W 2Þ, we can simply erase the bars of the �W in the remaining second-
order terms. We arrive at the equation
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Recall that RQ consists of the responses of all measured neurons, which are indexed by q 2 Q. For
an experiment, our data will be the measured value rQ of the spikes RQ and the measured value x
of the external variables X. By the assumption of Section 3.2, we are able to determine the param-
eters hi

q from this data set by analyzing just the spikes of neuron q and X. Hence, the only un-
known parameters in Eq. (4.16) are the causal connection W j

~qq and common input U j
~qq factors.

Our goal is to find those values of W j
~qq and U j

~qq for which our model will best fit the data. In
particular, given our measured values rQ and x, we will seek values of W j

~qq and Uj
~qq that will max-

imize PrðRQ ¼ rQjX ¼ xÞ, the probability that our model predicts we should have observed the
spikes rQ given that our external variables were x. In other words, we will seek maximum likeli-
hood estimators of W j

~qq and Uj
~qq.

Naively, one might expect that one could find the values of W j
~qq and Uj

~qq that maximize the
right-hand side of Eq. (4.16). However, the expansion in �W , though allowable in the presence
of weak coupling, has resulted in an expression that is no longer a probability. The most obvious
problem is that Eq. (4.16) is linear in U so that it is unbounded in U. Attempts to find parameters
that maximize (4.16) will lead to estimates of U that diverge to plus or minus infinity. Before we
can find a maximum likelihood estimator, we need to convert Eq. (4.16) back to a probability.

With one exception, Eq. (4.16) is a second-order approximation to a product of Poisson prob-
ability distributions. The exception is the same one we encountered with the single neuron anal-
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ysis: the term that captures second-order effects from a single connection (the second line of (4.4)
for the single neuron analysis, and the second line of (4.16) here). In the single neuron case, we
could ignore this discrepancy because we were just performing algebraic manipulations. Here,
however, we wish to build a maximum likelihood estimator from the form of the probability dis-
tribution PrðRQ ¼ rQjX ¼ xÞ, so we need to ensure it is a probability.

To convert the right-hand side of (4.16) to a probability, we modify our weak coupling assump-
tion of Section 3.3 to insist that any single connection is not too large. This additional assumption
does not affect the scaling argument or the assumptions on network topology because we are not
changing our assumption on any quantities that appear in a sum over all neurons in the network.
We simply assume that we can ignore the second-order effects of a term ð �W j

~qqÞ
2 that is not summed

over the network. (The fact that ð �W j
~qqÞ

2 is summed over q 2 Q is not problematic because the set of
measured neurons is a small fixed subset of neurons.)

With this assumption, we can simply erase the second line of Eq. (4.16). To simplify the com-
mon input terms with U j1

q2q1
, we will use the identity derivable from the definitions (3.1) and (4.9)

that for (q1, j1) 5 (q2,0) and f ð0; x; hi1�j1
q2
Þ > 0,
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Since U 0
q1q1
¼ 0, we do not need an identity for o

W
i1
q1

o
W

i1
q1

C. To address the case when
f ð0; x; hi1�j1

q2
Þ ¼ 0, we observe that in the computation of the maximum likelihood estimators de-

scribed below, we will need to evaluate PrðRQ ¼ rQjX ¼ xÞ only when rQ is the spike sequence
actually observed from the network. If f ð0;x; hi1�j1

q2
Þ ¼ 0, then the averaged model (3.4) states that

the probability of observing Ri1�j1
q2
¼ ri1�j1

q2
when ri1�j1

q2
> 0 is precisely zero. Hence, if the model is

accurately capturing the data, one would expect the measured value ri1�j1
q2

to be zero.12 If ri1�j1
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C even if

f ð0; x; hi1�j1
q2
Þ ¼ 0. We implicitly assume one makes this substitution in the case ri1�j1

q2
¼ 0.

With these substitutions, we write the probability of a measured spike sequence as
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2 1

a measured value ri1�j1
q2

is nonzero when f ð0; x; hi1�j1
q2
Þ ¼ 0, then, theoretically, the model must be a bad

ximation of the network and one should use a different model. In practice, one may allow for the possibility of
deviations from the model, and rescue the analysis by preventing f ð0; x; hi1�j1

q2
Þ from dropping below some tiny

er.
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where the � indicates that this is not a true second-order approximation in �W since we removed
the ðW j1

q2q1
Þ2 term. Now, we can pull all terms into C to write the result as a product of (dependent)

Poisson distributions, yielding an equation in the same form as our original model network (3.3):
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Recall that U is Oð �W 2Þ, so that Eq. (4.18) is a valid second-order expansion of Eq. (4.19).
We summarize Eq. (4.19) in Fig. 10. By assuming that all unmeasured neurons are from

different subpopulations than the measured neurons, we were able to lump causal effects at
a given delay into a single factor W j

~qq and all common input effects at a given delay into a
single factor U j

~qq.
Eq. (4.19) is indeed a probability, so we have rectified the problems with Eq. (4.16). Giv-

en the measured spikes rQ and measured external variables x, we can first obtain the hi
q

(according to Section 3.2), and then compute the values of the only unknown parameters,
the causal connection W j

~qq and common input Uj
~qq factors, by maximizing the probability of

observing rQ as predicted by Eq. (4.19). To find such maximum likelihood estimators of
W j

~qq and U j
~qq, we need to numerically find the maximum of the log likelihood, the loga-

rithm of Eq. (4.19) (the actual values being exceedingly small as to cause numerical
underflow).

In general, one has to worry about non-global local maxima of the log likelihood, as algo-
rithms to find maxima can get stuck in local maxima. Following Ref. [4], we can derive a
1 2

1 2

0. Illustration summarizing the effect of assuming all unmeasured neurons are from different subpopulations than
easured neurons. For some fixed delay j, the left panel illustrates many common input connections (thick dashed
and causal connections (thick solid lines) that introduce correlations between neuron 2 and neuron 1 delayed by j

teps. If we assume that all the unmeasured neurons (unlabeled squares) are from different subpopulations than
n 1 and neuron 2, the network simplifies to the effective network in the right panel. In this case, we have a single
ve common input connection (thick dashed lines, corresponding to U j

~qq in Eq. (4.19)) and a single effective causal
ction (thick solid lines, corresponding to W j

~qq in Eq. (4.19)).
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condition on f under which the log likelihood will be concave, which will guarantee that no
non-global local maxima exist. For fixed values of rQ, x and h, the log likelihood is of the
form
13 Th
not on
not co
cross
consta
likelih
log PrðRQ ¼ rQjX ¼ xÞ � C þ
X

i;q

ri
q log f ðAi

qy;x; hi
qÞ �

X
i;q

f ðAi
qy;x; hi

qÞ; ð4:20Þ
where each Ai
q is a fixed matrix, C is a constant, and y is the vector of all the parameters W j

~qq and
U j

~qq. (Recall that C (n,k) is the Poisson distribution (3.1).)
Since concavity is preserved under addition and ri

q P 0, the log likelihood will be concave in y if
f ðw;x; hÞ is convex in w and log f ðw; x; hÞ is concave in w. (Since the argument of f is linear in y,
the contours of f in y are linear, and the issue of concavity is reduced to the one-dimensional
dependence of f ðw; x; hÞ on w.) See Ref. [4] for more details on this argument in a more general
setting and a description of the (quite restrictive) set of functions that are both convex and log-
concave. The requirements to be both convex and log-concave include that f must be monoton-
ically increasing in w and that it must grow at least linearly in w.

It turns out that we can get away with more general forms of f because we assume that the W
and U are small. We can invoke our weak coupling assumption to make a quadratic approxima-
tion in W and U of the log likelihood.13 This quadratic function can have no non-global local
maxima. One can find the unique point where its Jacobian matrix is zero by taking a single New-
ton iteration starting from W = 0 and U = 0. One can take further iterations or use an alternative
method to solve the fully nonlinear equation. But, if the resulting maximum differs greatly from
the quadratic maximum and one is using a form of f that is not both convex and log-concave, one
should investigate if the strong coupling has induced the presence of multiple local maxima.

In practice, we have achieved good results even with relatively strong coupling and a sigmoidal f
by starting at W = 0 and U = 0 and iterating to a critical point using a modified version of Pow-
ell’s Hybrid method as implemented in the GNU Scientific Library [5]. (As computing the Hessian
matrix of the log likelihood is computationally intensive, this algorithm is faster than Newton’s
method.) Despite obtaining good results with strong coupling, one must keep in mind that the
results with strong coupling go beyond the state of the analysis and must be used with caution.

4.3.3. Same subpopulation case
We now address the realistic case where unmeasured neurons can be from the same subpopu-

lation as measured neurons. In this case, we can no longer exactly determine the causal subnet-
work among measured neurons. Instead, we can determine the causal subnetwork only subject
to the subpopulation ambiguity (Section 2).

To determine connectivity subject to the subpopulation ambiguity, we simply use the algorithm
we derived above, and do not need to make any further modifications. In other words, given an
is quadratic approximation will significantly differ from any of the second-order approximations presented above,
ly because it is an approximation of the logarithm of the likelihood, but also because it will contain many terms
nsidered in our weak coupling assumption. In particular, it will contain terms that are quadratic in U as well as

terms between W and U. The (complicated) quadratic approximation is of the form cþ Jyþ 1
2 ytHy where c is a

nt and y is the vector of all Ws and Us. J and H are the Jacobian and Hessian matrices, respectively, of the log
ood, evaluated when W and U are zero.
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observed spike sequence rQ, we find values of W j
~qq and Uj

~qq that maximize Eq. (4.19), even though
we derived that equation subject to different assumptions.

This result is primarily a numerical observation, though we can obtain some insight by exam-
ining Eq. (4.8), the last equation before we made assumptions about subpopulations. We examine
only the term corresponding to common input, looking at the effect of a common input connec-
tion from unmeasured neuron p1 onto measured neurons q1 and q2, with delays j1 and j2,
respectively,
14 Al
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C

(extracted from the second-to-last line of Eq. (4.8)). We assume that j2 > j1, so this common input
introduces correlations in the activity of neurons q1 and q2 that mimic a causal connection from q1

onto q2 with delay j3 = j2 � j1. Using Eq. (4.17), we can rewrite the common input expression as
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where i2 = i1 + j2.
First, we look at the case where neuron p1 is from the same subpopulation as neuron q1 when

viewed at the delay j1, analyzing the extreme case where f ð0; x; hi2�j3�j1
p1

Þ ¼ f ð0; x; hi2�j3
q1
Þ þOð �W Þ.

Then, a second-order approximation to expression (4.21) is
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C: ð4:22Þ
By examining Eq. (4.18), we see only a hint that the common input of expression (4.22) might act
like a causal connection. Compared to the connection of the first line of (4.18), expression (4.22)
has an additional f 0 factor. On the other hand, the common input of the last line of (4.18) has an
additional f 0/f factor. Hence, the cancellation of the factor 1=f ð0; x; hi2�j3

q1
Þ above has increased the

similarity of (4.22) to the causal connection and decreased its similarity to the common input of
(4.18).

We show via simulations that despite the additional f 0 factor, the effect of expression (4.22) is
similar to that of a causal connection.14 In particular, common input from the subpopulation of
neuron q1 will appear as a causal connection in our maximum likelihood estimators based on Eq.
(4.19), as illustrated in Fig. 11A. Consequently, our results are subject to the subpopulation ambi-
guity of Section 2.

Second, we look at the case where neuron p1 is from the same subpopulation as neuron q2 when
viewed at the delay j1 + j3, analyzing the extreme case where f ð0; x; hi2�j3�j1

p1
Þ ¼ f ð0; x; hi2

q2
Þ þOð �W Þ.

In this case, no terms cancel in the common input of (4.21), and the similarity to the causal connec-
tion of Eq. (4.18) is not increased. Simulations show that this common input from the subpopula-
tion of neuron q2 will still appear as a common input in our maximum likelihood estimators based
though it would seem in principle possible to distinguish the effect of (4.22) from both the causal connection and
on input of Eq. (4.18), the differences among the three effects are too subtle, and attempts to make the three-way

ction have proven too sensitive to noise.
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Fig. 11. The effect of common input from one of the measured neuron’s subpopulations. In this illustration, the
connection to measured neuron 2 has a longer delay than the connection to measured neuron 1, introducing
correlations in the measured neurons’ activity that is similar to a causal connection from neuron 1 onto neuron 2.
Subpopulation is indicated by shading (black, gray, or white). (A) Common input from an unmeasured neuron in
neuron 1’s subpopulation (left panel) appears like a causal connection from neuron 1 onto neuron 2 (right panel). Since
the common input configuration contains a causal connection from neuron 1’s subpopulation, this misidentification still
leads to a correct characterization of the connectivity subject to the subpopulation ambiguity. (B) Common input from
an unmeasured neuron in neuron 2’s subpopulation (left panel) is correctly identified as common input (right panel).
Distinguishing this common input configuration from a casual connection is required even if we allow subpopulation
ambiguity because there is no causal connection from neuron 2’s subpopulation onto neuron 1’s subpopulation.
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on Eq. (4.19), as illustrated in Fig. 11B. This result is crucial to maintain an accurate estimate of
connectivity even if we allow subpopulation ambiguity, as this common input configuration does
not have a causal connection from neuron q1’s subpopulation onto neuron q2’s subpopulation.
5. Simulation results

To illustrate our approach, we simulated several small networks. We designated two neurons as
measured neurons and recorded the spike times of only those two neurons. The remaining neu-
rons were unmeasured, and we ignored their spike times in the analysis. From the spike times
of the two measured neurons and the external variables, we attempted to determine the connec-
tivity between the two measured neurons.

5.1. The simulated networks

In this section, we describe the external variables and models that we simulated to generate the
data.

5.1.1. The simulated external variables
We viewed the simulated neurons as responding to a visual stimulus represented by the external

variable X. At each time i, the visual stimulus was a gray-scale rectangular image (e.g., on a com-
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puter screen) that is constant along vertical lines. We let X i
j represent the value of the jth line of the

image at time i, where X i
j indicates the brightness of line j relative to a background gray (positive

values of X i
j indicate brighter lines and negative values indicate darker lines). Each image con-

tained N0 = 100 lines (j = 0,1, . . .,N0 � 1). The entire visual stimulus was a movie consisting of
a sequence of such images that spanned 500,000 time bins.

The movie was a sequence of sinusoidal grating images, where each image is presented for ten
consecutive time bins (see Fig. 12). Let Ik be a sinusoidal image with wave number k defined so
that the jth line Ik

j is given by Ik
j ¼ casð2pkj=N 0Þ, where casx ¼ cos xþ sin x. The Ik are Hartley

basis functions defined so that they form an orthonormal set. We generated our stimulus movie
X by, every ten time bins, randomly selecting a new image, with replacement, from the set com-
posed of the Ik and �Ik, for k = �14,�13, . . ., 13,14.

5.1.2. The simulated models
We simulated two types of models to generate the test data for our analysis. The first model was

a linear–nonlinear model, where the response probability of each neuron was a linear function of
the stimulus composed with a static, memoryless nonlinear function. The probability distribution
of the response Ri

s of neuron s at time bin i, conditioned on previous spikes R<i of all neurons and
the stimulus X, was
Fig. 1
simul
PrðRi
s ¼ ri

sjR<i ¼ r<i;X ¼ xÞ ¼ C ri
s; g �hi

s � xþ
X

~s

X
j>0

�W j
~ssr

i�j
~s ; �As;�ys;��s

 ! !
; ð5:1Þ
where C(n,k) is the Poisson distribution (3.1), the first sum is over all neurons ~s in the network,
and gsðy; �As;�ys;��sÞ is an error function nonlinearity with argument y and parameters �As, �ys and
��s defined by
gðy; �As; �ys;��sÞ ¼
�As

2
1þ erfðy � �ys

��s

ffiffiffi
2
p Þ

� 	
: ð5:2Þ
We let �hs be a spatio-temporal linear kernel for neuron s. We view the kernel as sliding along the
stimulus with time, and let �hi

s be the kernel shifted for time point i. We write the convolution of the
kernel with the stimulus as the dot product �hi

s � X (implicitly viewing the temporal index of the
stimulus as going backward in time).

In our simulations, we set the form of the kernels to capture some features of the response of
neurons in visual cortex [6]. For vertical line j = 0,1, . . .,N0 and temporal index t, we used the
form
2. Example of a sequence of the sinusoidal grating images from the movie used as the visual stimulus in the
ations. Each image was presented for ten units of time, after which a new image was randomly selected.
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�hsðj; tÞ ¼ ðt � bsÞ exp � t � bs

ss
� ðj� cÞ2

2r2
s

 !
cosð2pfsðj� cÞ þ /sÞ
for t > bs and �hsðj; tÞ ¼ 0 otherwise. We set c = (N0 � 1)/2 so that the kernels were centered on the
image; we set the remaining kernel parameters, bs, ss, rs, fs, and /s, individually for each neuron.
We formed the vector �hs by sampling �hsðj; tÞ for t = 1,2, . . ., 100, and normalized the resulting vec-
tor so that the variance of �hi

s � X would be one.
Our second model was similar to the linear–nonlinear model, except that the relationship be-

tween the neural activity and the stimulus was more fundamentally nonlinear. In this model,
we convolved the stimulus separately with two linear kernels �hi

s;1 and �hi
s;2 as well as their opposites

��hi
s;1 and ��hi

s;2. We added the coupling effects to the convolution with �hi
s;1, took a nonlinear func-

tion of each convolution, and then added together the four results.
We included a ‘‘refractory period,’’ so that after each time a neuron spiked, it could not spike

for the subsequent time bin. Hence each Ri
s could be only zero or one, and Ri

s was set to zero if
Ri�1

s ¼ 1. If the neuron had not spiked in the previous two time bins, the probability of a spike
was15
PrðRi
s ¼ 1jR<i ¼ r<i;Ri�1

s ¼ 0;X ¼ xÞ ¼ 1� Cð0; ki
sÞ ð5:3Þ
where
ki
s ¼ �As;1

h
�hi

s;1 � xþ
X

~s

X
j>0

�W j
~ssr

i�j
~s � �ys;1

i2

þ
þ �As;2

h
� �hi

s;1 � x� �ys;2

i2

þ
þ �As;3

h
�hi

s;2 � x

� �ys;3

i2

þ
þ �As;4

h
� �hi

s;2 � x� �ys;4

i2

þ
: ð5:4Þ
We used the half-squaring nonlinearity (½y�2þ ¼ y2 if y>0 and is zero otherwise) with parameters
�As;k and �ys;k for k = 1,2,3, and 4. We chose the parameters of �hs;2 to be identical to those of
�hs;1, except that we altered its spatial phase by one quarter period. (We set /s,1 = /s and
/s,2 = /s + p/2.) Hence, model (5.3) was a generalization of the energy model [7] commonly used
to model the responses of visual neurons. We view each the four terms in (5.4) as ‘‘subunits’’ and
refer to model (5.3) as a subunit model.

For all simulations, we modeled the effects of connections between neurons as alpha-functions
of the form
�W j
s1s2
¼ Bs1s2

j� ds1s2

s2
w

exp � j� ds1s2

sW


 �
for j > ds1s2
and �W j

s1s2
¼ 0 otherwise. The parameter ds1s2

specified the delay in the connection
from neuron s1 onto neuron s2, and Bs1s2

was the strength of the connection. For all connections,
we set sW = 0.5. For each simulation, we repeated the above movie 10 times. We set the param-
eters to obtain approximately 30,000–40,000 spikes per neuron.
used the probability 1 � C(0,k) so that the probability of a spike was set to be the probability of one or more
under the Poisson probability distribution.
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5.2. The models used for analysis

To perform our analysis, we need to choose a model and a method to determine its effective param-
eters, as discussed in Section 3.2. We use the linear–nonlinear model (5.1) and the linear–quadratic–
nonlinear model [8], as we have developed an algorithm to determine their parameters from movies
of orthogonal images, such as the stimulus described above. The algorithm for determining the
parameters is described in Appendix C, which is a modification of that presented in Ref. [8].

To write our model Eqs. (3.3) in terms of the linear–nonlinear model (5.1), we define the model
function f as
16 W
comp
data i
f ðw; x; �hi
sÞ ¼ g �hi

s � xþ w; �As; �ys;��s

� 

: ð5:5Þ
Hence, the vector of model parameters �hi
s contains the linear kernel �hi

s and the error function non-
linearity parameters �As, �ys and ��s. For each measured neuron q 2 Q, the effective single neuron
parameters hi

q (containing the effective linear kernel hi
s and the effective error function nonlinearity

parameters As, ys, and �s) are determined by fitting Eq. (3.4) with f ð0; x; hi
qÞ ¼ gðhi

q � x; Aq; yq; �qÞ
from the spikes of neuron q, using the procedure described in Appendix C.

To obtain the linear–quadratic–nonlinear model, we add a quadratic kernel �hs;2 to the linear
nonlinear model. The quadratic kernel is defined in a similar way as the linear kernel, except that
we convolve the kernel with the vector denoted by X2 that has components ðX i

jÞ
2, the squares of

the stimulus values. Exactly as we did for the linear kernel, we write this convolution as �hi
s;2 � X2,

where the temporal index of the kernel indicates shifting in time, and normalize �hs;2 so that the
variance of �hi

s;2 � X2 is one. Denoting the linear kernel now by �hi
s;1, the model function f for the

linear–quadratic–nonlinear model is
f ðw; x; �hi
sÞ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �as

p
�hi

s;1 � xþ
ffiffiffiffi
�as

p
�hi

s;2 � x2 þ w; �As; �ys;��s

� �
; ð5:6Þ
where �as (restricted to 0 6 �as 6 1) indicates the relative weight of the quadratic kernel. In this
case, the vector of model parameters �hi

s contains the linear and quadratic kernels, the parameter
�as, and the error function parameters �As, �ys, and ��s. The effective single neuron parameters hi

q of
each measured neuron q are determined by fitting Eq. (3.4) with
f ð0;x; hi
qÞ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� as

p
hi

1;q � xþ
ffiffiffiffi
as
p

hi
2;q � x2; Aq; yq; �q

� �

using the procedure described in Appendix C. As above, hi

q contains the unbarred versions of the
parameters in �hi

q.
Both the linear–nonlinear model and the linear–quadratic–nonlinear model satisfy the require-

ments of Section 3.2. Note that, since w is just added to the �h � x terms, we can determine

f ðw;X; hi
qÞ and f 0ðw;X; hi

qÞ once we have fit f ð0;X; hi
qÞ in the single neuron analysis. Hence, once

we determine the hi
q from the single neuron analysis, we can compute all quantities in (4.19) except

for the W and U.16
e used cross-validation to estimate f ðw;X; hi
qÞ and f 0ðw;X; hi

qÞ. We divided the data into 10 segments. When
uting these quantities for each time bin i from one of these segments, we calculated the parameters hi

q from the
n the other 9 segments.
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Note that the discretization into temporal bins is artificial, as least for biological systems. For
simplicity, we simulated models in discrete time, using time bins of size one. We performed all our
analyses using time bins of size two.

5.3. Linear–nonlinear model simulations

For the first set of tests, we simulated networks of linear–nonlinear neurons (5.1). Each network
contained two measured neurons that are indexed by q = 1,2. All other neurons were unmea-
sured, and we ignored their spikes in all analyses.

We analyzed the results to calculate our causal connection factor W and common input factor
U using the linear–nonlinear model (5.5). We also calculated a commonly used measure of the cor-
relation between two spike trains, the shuffle-corrected correlogram or covariogram [9–11]. We
can calculate this measure because we have repeated the stimulus multiple times. For each mea-
sured neuron q = 1,2, we average its activity over all stimulus repeats, which we write as hRi

qjXi.
Then, the covariogram for measured neuron 1 and neuron 2 is
Cj ¼ hRi
1Ri�j

2 i � hRi
1jXihR

i�j
2 jXi

� �
; ð5:7Þ
where the remaining hÆi indicate an average over the entire experiment. We index the covari-
ogram by the delay j, which corresponds to the spike time of neuron 1 minus the spike time of
neuron 2. For display purposes, we plot the W and U factors using the same convention,
defining
W j ¼
W �j

12 for j < 0;

0 for j ¼ 0;

W j
21 for j > 0;

8><
>:

U j ¼ U�j
12 for j 6 0;

U j
21 for j > 0:

(

We begin with two simple networks: a network of two measured neurons with a causal connection
and a network of two uncoupled measured neurons that both receive a connection from a third,
unmeasured neuron. The results are shown in Fig. 13. We chose parameters so that the covario-
gram (top plot) in both networks has a peak at a delay of four units of time. Note that one cannot
distinguish the networks from the covariograms alone. The covariograms have virtually the same
form regardless of whether the two measured neurons have a causal connection or are correlated
simply due to a common input connection.

The bottom two panels of Fig. 13 demonstrate that our analysis can indeed distinguish the
causal connection from the common input, at least for the case when the unmeasured neuron
is from a distinct subpopulation. In Fig. 13A, the causal connection factor W is significantly po-
sitive at a delay of 4, while the common input factor U is virtually zero. In Fig. 13B, on the other
hand, it is the common input factor U that is significantly positive at a delay of 4. (See below for
an explanation why the causal connection factor W dips negative at a delay of 4.) Hence, we can
conclude that the correlation is due to a causal connection in Fig. 13A and the correlation is due
to common input in Fig. 13B.
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Fig. 13. Distinguishing a causal connection from common input in simulations of linear–nonlinear networks. (A) The
results from analyzing the spikes of two neurons with a causal connection, as schematized at the top. Neuron 2 has a
causal connection onto neuron 1 with a delay of four units of time. Shading or hatching indicates subpopulation. The
correlation between the spikes of neuron 1 and neuron 2, as measured by the covariogram (5.7), is plotted in the top
panel. The covariogram indicates that the spikes of neuron 1 are correlated with the spikes of neuron 2 delayed by four
units of time. The causal connection factor W, but not the common input factor U, is positive at a delay of 4, indicating
the presence of a causal connection from neuron 2 onto neuron 1. Delay is spike time of neuron 1 minus spike time of
neuron 2. In all three plots, thin gray lines indicate a bootstrap estimate of one standard error, calculated by resampling
from the set of stimulus repetitions 100· (when the standard error is small, gray lines are obscured by the black line).
Simulation parameters: �A1 ¼ �A2 ¼ 1, �y1 ¼ 5:4, �y2 ¼ 7:6, ��1 ¼ 2:0, ��2 ¼ 3:0, b1 = b2 = 0, s1 = 40, s2 = 50, r1 = 10,
r2 = 15, f1 = 0.08, f2 = 0.04, /1 = 0, /2 = 2p/3, B21 = 3.0, d21 = 3, B11 = B12 = B22 = 0. (B) The results from analyzing
the spikes of two neurons that received common input connections from a third, unmeasured, neuron. Panels as in (A).
As schematized at the top, the connection from the unmeasured neuron (unlabeled) onto neuron 1 had a longer delay
(by four units) than the connection onto neuron 2. Hence, the covariogram reveals the correlation at a delay of 4. The
plots of W and U reveal that this correlation is due to common input rather than a causal connection from neuron 2
onto neuron 1, as the common input factor U is positive at a delay of 4. Most parameters as in panel (A). Exceptions
and additional parameters (the unmeasured neuron is indexed by 3): �A3 ¼ 1:0, �y1 ¼ 5:7, �y2 ¼ 7:9, �y3 ¼ 10:0, ��3 ¼ 4:0,
b3 = 0, s3 = 45, r3 = 20, f3 = 0.06, /3 = 4p/3, d31 = 5, d32 = 1, B31 = B32 = 7, Bij = 0 for all other i and j.
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Such conclusions, however, must be interpreted with the subpopulation ambiguity described in
Section 2. The next two tests demonstrate that we indeed obtain a description of connectivity sub-
ject to subpopulation ambiguity as claimed in Section 4.3.3. We simulate the same common input
network of Fig. 13B, but change the parameters of the unmeasured neuron so that it is first in the
subpopulation of neuron 2 and then in the subpopulation of neuron 1. The results are shown in
Fig. 14. Common input from neuron 2’s subpopulation (Fig. 14A), but not common input from
neuron 1’s subpopulation (Fig. 14B), appears like a causal connection from neuron 2 onto neuron
1. Since common input from neuron 2’s subpopulation does contain a connection from neuron 2’s
subpopulation onto neuron 1, these results still accurately reflect the connectivity when interpret-
ed with subpopulation ambiguity. (Compare the results of Fig. 11 to Fig. 14, where the roles of
neuron 1 and neuron 2 are reversed.)

Note that in Figs. 13B and 14B, W dips negative at the delay of 4. This reciprocal behavior fre-
quently happens when connections are too strong to strictly satisfy our weak coupling assumption
(Section 3.3). Such behavior does not present ambiguity in the interpretation of the results. In
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Fig. 14. The presence of subpopulation ambiguity in the identification of causal connections (cf. Fig. 11). Panels as in
Fig. 13. In both examples, common input from an unmeasured neuron has a longer delay to neuron 1, creating
correlations in the spikes of neuron 1 and neuron 2 that mimic a causal connection from neuron 2 onto neuron 1. (A)
When the unmeasured common input neuron is from neuron 2’s subpopulation (ccj

32 from Eq. (4.12) exceeded 0.9), the
causal connection factor W is positive, incorrectly indicating a causal connection from neuron 2 onto neuron 1.
Nonetheless, the determination of connectivity is correct if one allows subpopulation ambiguity, as the network does
contain a connection from neuron 2’s subpopulation onto neuron 1. Parameters as in Fig. 13B, except that b2 = 2.0,
s3 = 50, r3 = 15, f3 = 0.035, /3 = 2p/3. (B) Even when the unmeasured common input neuron is from neuron 1’s
subpopulation (ccj

31 from Eq. (4.12) exceeded 0.9), the common input factor W is positive, correctly indicating that the
correlation was due to common input. Parameters as in Fig. 13B, except that y2 = 7.8, b1 = 6.0, s3 = 40, r3 = 10,
f3 = 0.075, /3 = 0.
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both cases, we know that the results indicate a positive correlation due to common input rather
than a negative correlation due to a causal connection because the spikes are positively correlated,
as demonstrated by the covariogram.

Because of the weak coupling assumption (Section 3.3), our analysis explicitly ignores the ef-
fects of chains of connections that are longer than two edges. However, if we include in our sim-
ulations such longer chains that introduce correlations between a pair of measured neurons, the
analysis will still categorize the source of those connections as arising from a causal connection or
common input (subject, of course, to subpopulation ambiguity). If neuron 2 has a long chain of
causal connections onto neuron 1, and these connections are strong enough to induce significant
correlations between neuron 1 and neuron 2, then the analysis classifies the correlations as result-
ing from a causal connection (Fig. 15A). On the other hand, if neuron 1 and neuron 2 receive
common input from an unmeasured neuron via long chains of connections, and that common in-
put neuron is from a distinct subpopulation, the analysis classifies the correlations as resulting
from common input (Fig. 15B). Hence, we can obtain an estimate of the causal subnetwork even
in the presence of such long chains of connections.

5.4. Subunit model simulations

For the second set of tests, we simulated networks of subunit model neurons (5.3). The subunit
model was chosen so that it deviates from both the linear–nonlinear (5.5) and linear–quadratic–
nonlinear (5.6) models for which we have implemented our analysis. The most fundamental
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Fig. 15. Distinguish causal connections even with long chains of connections. The analysis can distinguish long chains
of causal connections from long chains of common input. Panels as in Fig. 13. (A) A causal connection from neuron 2
to neuron 1 through a chain of unmeasured neurons is identified as a causal connection by W. Most parameters as in
Fig. 13B. Exceptions and additional parameters (the unmeasured neurons are indexed by 3 and 4): �A4 ¼ 1, �y1 ¼ 5:8,
�y1 ¼ 5:9, �y2 ¼ 7:7, �y3 ¼ 10:3, �y4 ¼ 6:9, �4 = 2.5, b4 = 0, s4 = 40, r4 = 15, f4 = 0.07, /4 = p, d24 = 0, d43 = 1, d31 = 0,
B24 = B43 = B31 = 10, Bij = 0 for all other i and j. (B) A common input connection onto neuron 1 and neuron 2 via
chains of unmeasured neurons is identified as a common input connection by U. Most parameters as in panel (A).
Exceptions and additional parameters (the unmeasured neurons are indexed by 3, 4, and 5): �A5 ¼ 1, �y2 ¼ 8:0, �y3 ¼ 10,
�y4 ¼ 7:1, �y5 ¼ 9:2, �5 = 3.5, b5 = 0, s5 = 50, r5 = 10, f5 = 0.05, /5 = 5p/3, d34 = 4, d41 = 2, d35 = d52 = 1,
B34 = B41 = B35 = B52 = 11, Bij = 0 for all other i and j.
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difference is the four separate subunits that create a relationship between the spikes and the stim-
ulus that cannot be captured exactly by the linear–nonlinear (5.5) or linear–quadratic–nonlinear
(5.6) models. Moreover, even if only one subunit were present, the subunit model (5.3) uses a half-
squaring nonlinearity, a binary spike distribution, and a refractory period in contrast to the error
function nonlinearity, Poisson spike distribution, and no refractory period assumed by the anal-
ysis. Hence, the subunit model simulations are designed to test the performance of our analysis
under deviations from model assumptions.

We simulate the same type of network for all our subunit model simulations. The network
contains a causal connection from measured neuron 2 onto measured neuron 1. In addition, an
unmeasured neuron from a different subpopulation has common input connections onto both neu-
ron 1 and neuron 2. This time, the common input connection has a longer delay onto neuron 2, so
the common input leads to correlations that mimic a causal connection from neuron 1 onto neuron
2. Since we use the convention that delay equals the spike time of neuron 1 minus the spike time of
neuron 2, the causal connection creates correlations at a positive delay and the common input cre-
ates correlations at a negative delay. Hence, our analysis will be successful if W is positive at a po-
sitive delay (set to be a delay of 4) and U is positive at a negative delay (set to be a delay of �4).

Results from our first subfield model simulation are shown in Fig. 16. When we analyzed the
spikes of neuron 1 and neuron 2 using the linear–nonlinear model (5.5) (Fig. 16A), we failed to
distinguish the causal connection from the common input. The estimates of W and U are large
for most delays, yet both estimates stay within approximately one standard error from zero at
the delays of 4 and �4. This negative result is not surprising because the linear–nonlinear model
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Fig. 16. Results from subfield model simulations with significant contributions from many subfields. Here we simulated
a network that has a causal connection from neuron 2 onto neuron 1 (at a delay of 4) as well as common input from an
unmeasured neuron with delay to neuron 2 that is four units of time longer (corresponding to a delay of �4 in our
convention). Panels as in Fig. 13. (A) The analysis based on the linear–nonlinear model failed to determine the sources
of the correlations. At the delays of 4 and�4, both W and U differed insignificantly from zero. Both W and U fluctuated
between large values (note scales). The results were invalid because the linear–nonlinear model failed to capture the
nonlinear nature of the neurons’ response to the stimulus. (B) The analysis based on the linear–quadratic–nonlinear
model did successfully distinguish the causal connection at a delay of 4 (W is significantly positive) and the common input
at a delay of �4 (U is significantly positive). Although the linear–quadratic–nonlinear model only crudely approximates
the nonlinear nature of the subfield model, it captures enough for the analysis to determine the connectivity pattern.
Kernel parameters as in Fig. 13B except that f3 = 0.02. Other parameter: A1,1 = 0.006, A2,1 = 0.007, A3,1 = 0.009,
A1,2 = 0.005, A2,2 = 0.006, A3,2 = 0.008, A1,3 = 0.004, A2,3 = 0.005, A3,3 = 0.007, A1,4 = A2,4 = A3,4 = 0.002, y1,k = 0.1,
y2,k = 0.2, y3,k = 0.3 for k = 1,2,3, and 4, d21 = 3, d31 = 1, d32 = 5, B21 = 3, B31 = B32 = 8, Bi,j = 0 for all other i and j.
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captures only the (rectified) linear component of the response, but the simulated neurons’ re-
sponse had very little linear component. (When fitting the linear–quadratic–nonlinear model,
the as exceeded 0.9.) The presented approach requires the use of a model that better corresponds
to the neural response.

On the other hand, the analysis based on the linear–quadratic–nonlinear model (5.6) does accu-
rately identify both the causal connection and the common input (Fig. 16B). The analysis success-
fully distinguishes the common input (at a delay of �4) from the causal connection (at a delay of
4). This result is notable because the linear–quadratic–nonlinear model only crudely approximates
some of the spatial nonlinearity of the subfield model (5.3). The fact that the quadratic terms cap-
tured enough of the nonlinear response properties to obtain accurate results provides evidence
that the approach is at least somewhat robust to deviations from the model assumptions.

Next, we simulated the same network, except that we changed the subfield weights so that the
response was dominated by a single subunit (�As;1 � �As;2; �As;3; �As;4 for all neurons s). In this way, the
differences between the subunit model (5.3) and the linear–nonlinear model (5.5) were minimized.
Fig. 17A shows that the analysis based on the linear–nonlinear model successfully distinguishes
between the causal connection and the common input. (Results using the linear–quadratic–non-
linear model (5.6) were similar.) In this case, there was a sufficient linear component to the re-
sponse for the linear–nonlinear model to give good results. (When fitting the linear–quadratic–
nonlinear model, the as values were between 0.15 and 0.4.)



1 2

longer delay

0

2

4
x 10

–4

C
or

re
la

tio
n

–1
0
1
2

W

–20 –10 0 10 20

–1
0
1
2

Delay

U

1 2

longer delay

0
2
4
6

x 10
–4

C
or

re
la

tio
n

–8
–6
–4
–2

0

W

–20 –10 0 10 20
0
2
4
6
8

Delay

U

A B

Fig. 17. Results from subfield model simulations dominated by one subfield. We simulated the same network as in
Fig. 16, so that the effect of a causal connection appeared at a delay of 4 and common input appeared at a delay of �4.
Panels as in Fig. 13. (A) Since one subfield dominates, the subfield model deviates only modestly from the linear–
nonlinear model. In this case, analysis based on the linear–nonlinear model correctly identifies the causal connection at
a delay of 4 and the common input at a delay of �4. Parameters as in Fig. 16 except that A1,1 = 0.01, A2,1 = 0.013,
A3,1 = 0.023, As,2 = As,3 = 0.002, As,4 = 0.001, bs = 0 for s = 1,2,3. (B) The analysis is less robust to model deviations
when the measured neurons are from the same subpopulation. (Here, ccj

21 of (4.12) exceeded 0.8.) These results are from
a simulation identical to that of panel (A), except that the kernel parameters of neuron 2 were modified to closely match
those of neuron 1. The causal connection at a delay of 4 was not correctly identified, as W has no peak there.
Parameters as in panel (A) except that f2 = 0.075, /2 = p/6.
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The approach is less robust to deviations from the model assumptions when the measured neu-
rons are from the same subpopulation. For example, if we change the parameters of neuron 2 to
be similar to those from neuron 1 and repeat the simulation of Fig. 17A, we fail to obtain correct
estimates of the connectivity. As shown in Fig. 17B, the linear–nonlinear model fails to capture
the neural response properties well enough to distinguish the connectivity. The common input fac-
tor U does have a large positive peak at a delay of �4, but W does not have a positive peak at a
delay of 4. Also, W is significantly negative and U is significantly positive at most delays. (Analysis
with the linear–quadratic–nonlinear model performs no better; in this case, U even shows a slight
peak at a delay of 4.) If we set the weight of all subunits but one to zero, then the analysis does
again correctly determine the connectivity (not shown). Hence, the failure shown in Fig. 17B indi-
cates that small deviations from the model assumptions can lead to invalid results if the measured
neurons are from the same subpopulation.
6. Discussion

We have developed a model-based modular approach to identifying causal connections in a
neural network where many neurons remain unmeasured. The approach is modular because
the analysis works with a large class of models (which determine the f (w,X;h) of Eq. (3.3)).
The network analysis can use models, and algorithms to determine their parameters, that have
been developed independently. When a model captures the neurons’ behavior sufficiently well,
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we can distinguish causal connections from common input that originates from unmeasured neu-
rons (subject to the subpopulation ambiguity described in Section 2). The approach is modestly
robust to deviations from the model when analyzing connectivity between two measured neurons
that have dissimilar response properties.

We stress that though our identification of causal connections contains the subpopulation
ambiguity described in Section 2, the identified connections are between individual neurons,
not between groups of neurons. (Subpopulation ambiguity only plays a role in interpreting the
precise identity of those individual neurons.) The activity of each node on the network model
(3.3) is a spike train of a single neuron. The analysis is designed to be applied to simultaneous
measurements of spikes trains of individual neurons.

6.1. Two heuristic explanations for the results

The distinction between the causal connections and the common input is captured in the final
Eq. (4.19) for the likelihood of observing the measured neurons’ spikes (which we obtained by
averaging over unmeasured neurons’ spikes). In this equation, the only difference between the
causal connection W terms and the common input U terms is the factor of f 0/f in the U term.
A heuristic explanation for this factor is that in the common input case, unlike the causal connec-
tion case, the correlation is induced because both measured neurons are receiving a connection.
When expanding the full network Eq. (4.7) in terms of �W , derivatives of f correspond to the effect
of receiving a connection. Hence, in the U terms of the final Eq. (4.19), the presence of the con-
nection onto neuron ~q has replaced a f ð0;x; hi�j

~q ) factor with the derivative f 0ð0;x; hi�j
~q ). We ex-

ploit the difference between f and its derivative with respect to W to distinguish common input
from a causal connection. (See below for a discussion on how to make the approach more robust
in case this difference is small.)

We also reiterate a heuristic explanation that follows more naturally from the mathematics of
Ref. [3], but still gives some intuition why one may be able to distinguish causal connections from
common input even in the present context. In the causal connection network of Fig. 13A, if the
external variables X happened to be optimal for neuron 2 followed by optimal for neuron 1, the
effect of the connection would be enhanced. (Neuron 1 would be highly likely to receive an input
from neuron 2 just as it was primed to fire a spike due to the external variables.) In contrast, in the
common input network of Fig. 13B, there is no connection from neuron 2’s subpopulation onto
neuron 1’s subpopulation. Hence, if the external variables happened to be optimal for neuron 2
followed by optimal for neuron 1, there is no connection whose effect would be enhanced. This
heuristic argument suggests that the relationship between the external variables and the measured
neurons’ spike pairs should be different in the causal connection configuration as opposed to the
common input configuration. Although we do not explicitly rely on such differences between caus-
al connection and common input in the analysis, the fact that such differences exist enables our
analysis to succeed in determining the causal connections.17
17 Note that in the common input configuration of Fig. 14A (but not in the common input configuration of Fig. 14B),
there is a connection from neuron 2’s subpopulation onto neuron 1’s subpopulation. The effect of this connection would
also be enhanced when the external variables happened to be optimal for neuron 2 followed by optimal for neuron 1.
Hence this heuristic argument can also explain the presence of the subpopulation ambiguity.
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6.2. Relationship to other work

The present approach builds on earlier work [3,12] that addressed the same problem of deter-
mining connectivity in the presence of unmeasured neurons and introduced the concept of a sub-
population. The earlier work applied only to neurons responding to a white noise stimulus in a
manner that could be well approximated by a linear–nonlinear model. In contrast, the present
work allows the use of a large class of models that relate neuronal response to measurable external
variables. Moreover, the mathematical approach has completely changed in the present work. The
earlier work employed a combination of spike correlation analysis [9–11] and white noise analysis
[13–15], while the present work is based on maximum likelihood estimators. Using maximum like-
lihood estimators has increased the statistical efficiency of the approach. However, as demonstrat-
ed by the long simulations required, the approach still requires large amounts of data to make a
successful determination of causal connections.

There is a large literature about determining connections between neurons [9–11,16–18]. Meth-
ods such as partial coherence [16] are designed to account for common input from measured neu-
rons. Recent examples [17,18] employ maximum likelihood estimates similar to what we have used
here. However, we are unaware of others who explicitly address the effects of unmeasured neurons,
which is the focus of this paper.

6.3. Validation methods

The demonstrated failures in Figs. 16A and 17B indicate the importance of validating the re-
sults before they can be trusted to be an accurate representation of the causal structure of the net-
work. When a model f is used so that the effective single neuron model (3.4) does not sufficiently
well capture the neurons’ behavior, the network analysis may lead to inaccurate results. Develop-
ing methods to identify those invalid cases will be crucial for the viability of this approach.

Standard point process model analyses, such as those based on the time-rescaling theorem
[2,19], will be one place to start the development of validation methods. Such analyses should
be able to detect cases such as that of Fig. 16A, where the model fails to capture the relationship
between the neural response and the external variables. However, these analyses also detect those
deviations from the model to which the network analysis is robust.

Since any model of the form (3.4) will only approximately capture the actual neuron response,
deviations from the model prediction will be present for any model. A useful validation method
must be able to distinguish between critical deviations that invalidate the network analysis and
harmless deviations to which the network analysis is robust. We have not yet developed valida-
tions that meet this requirement.

For example, model (3.4) for any f should fail validations based the time-rescaling theorem on
all simulations of the subunit model (5.3) (Figs. 16 and 17). The subunit model includes a refrac-
tory period while the model (3.4) is an inhomogeneous Poisson process. The refractory period
should induce a deviation from Poisson that will be detected after rescaling time. However, the
presence of the refractory period did not appear to degrade the performance of our network
analysis.

Moreover, such analyses treat the response of each neuron separately and hence cannot distin-
guish between the invalid case of Fig. 17B and the case of Fig. 17A in which we could properly
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determine the causal connection. In both cases, the response of the individual neurons deviated
from the linear–nonlinear model (using Eqs. (3.4) and (5.5)) by an equal amount. The difference
between the two cases is that only in Fig. 17B were there stimulus-dependent correlations [20] be-
tween neuron 1 and neuron 2 (because both neurons responded to similar stimulus features). We
believe the network analysis failed in this case because the model did not adequately capture those
stimulus-dependent correlations. A validation method that could detect a poor representation of
these stimulus-dependent correlations may be able to indicate when the results based on that mod-
el would be invalid.

6.4. Further extensions

Other than robustness to model deviations and validations to detect critical deviations, one
further issue may need to be addressed before this approach can be confidently applied to
analyzing experimental data. As mentioned above, the current implementation of this ap-
proach depends on exploiting the difference between the model function f and its derivative
with respect to W. As a consequence, if f (w,x;h) had an exponential dependence on w, the
difference between the W term and the U term would disappear, and the method would fail.
This observation was one motivation for choosing an error function nonlinearity (5.2) in our
models. This sigmoidal dependence on w created a significant difference between f ð0;x; hi�j

~q )
and its derivative.

However, an exponential functional form of f is commonly used in models, in part because it
allows one to prove nice properties of the likelihood surface [4]. Moreover, even if one employs a
sigmoidal nonlinearity in the analysis, one may legitimately worry of the consequences if the actu-
al data are generated by a process with a nearly exponential dependence on w.

A sigmoidal form of spiking probability can represent saturation of a neuron’s response when it
is driven strongly. Such an effect could be obtained even with an exponential form if one allowed a
strong history dependence in the spiking probability. For example, one could model a refractory
period by letting the �W j

qq factors be large and negative for small j. If one included such strong his-
tory dependence, it could not be expanded out in a Taylor series. The averaged model (3.4) would
have to include the dependence of the probability of a spike Ri

p at time i on the history of spikes
Ri�j

p at previous times i � j. Extending the approach to include strong history dependence may in-
crease the robustness to the form of nonlinearity in f. Moreover, with such non-Poisson spiking
behavior included in the averaged model (3.4), history dependence such as from a refractory peri-
od will no longer be a deviation from model predictions. Hence, validation approaches such as
those involving the time-rescaling theorem might only detect other types of deviations such as
those that actually invalidate the results of our network analysis.

Another direction to take this research is to investigate the effects of higher-order powers of �W
such as those that capture effects of three or more connections. Given the combinatorial explosion
that occurs as one adds higher-order effects, one will be limited in how far one can push this type
of analysis. Nonetheless, additional insights into the network structure may be attainable with
judicious inclusion of some higher-order effects, especially if one merely desires to determine
which of a small set of causal connectivity patterns is more likely to have produced the observed
data.
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In conclusion, we believe the presented approach to network analysis can evolve into a useful
tool for analyzing the causal structure in networks, provided one can model the relationship be-
tween the response of a node and a set of measurable external variables. To create reliable tools,
we must develop better approaches to validating the robustness of the approach to model devia-
tions. Once such validation methods are available, this approach may provide a window into the
causal structure of the brain’s neural networks or other networks even when one can simulta-
neously measure the activity of only a relatively small number of nodes.

Appendix A. Derivation of single neuron results

We outline the calculation to obtain an expression for the original parameters of model (3.3) in
terms of the effective parameters of the averaged model (3.4). We derive this relationship by aver-
aging model (3.3) over the activity of all neurons except one.

We start with (4.2) for Ri1
s1

, the activity of node s1 at time i1, expressed as an average over pos-
sible values of r, which we rewrite here:  ! !
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We take a second-order Taylor series with respect to �W . In terms of the shorthand notation (4.3),
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Ignoring temporal indices, each term in Eq. (A.1) corresponds to a (not necessarily connected)
digraph with one or two edges corresponding to the combination of the �W j

~ss present in the term.
For example, terms in the third line contain �W j2

~s2s2
�W j3

~s3s2
, which corresponds to the digraph where

two neurons (~s2 and ~s3) have a connection onto neuron s2.
Note that all network effects have been removed from the �C (and the derivatives o�C and o2 �C).

Since each �Ci
s depends only on a single ri

s, we can factor each term of Eq. (A.1) into factors that
depend only on a single ri

s and evaluate the sum over all ri
s independently from all other factors.

For example, since �Ci
s is the probability distribution of a Poisson random variable, the sum of �Ci

s
times a power of ri

s (over all possible values of ri
s) is simply a moment of the Poisson distribution.

We can also explicitly calculate the sums involving derivatives of �Ci
s from the definition in Eq.

(3.1). The results are summarized in the following:
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The first equation in (A.2) is simply the probability of having any type of activity. In each term of
Eq. (A.1), most of the �Ci

s are alone and disappear by summing to one in this way.
We know that the activity of neuron s1 should not be affected by digraphs that contain nodes

without a path to neuron s1. These terms will contain a derivative of �Ci
s that is not matched by a ri

s.
According to (A.2), these unmatched derivatives sum to zero, so the terms disappear as expected.

More generally, to simplify Eq. (A.1), we separate all the different types of digraphs hidden in
its terms. To accomplish this combinatorial task, we find all the ways in which the neuron sub-
scripts and temporal superscripts of Eq. (A.1) can be identified. (One must remember the causal
restriction that j > 0.) Because the terms are not summed over ri1

s1
, the neuron subscript s1 and the

temporal superscript i1 play a special role. For example, in the second line of (A.1), we identify
(s2, i2) = (s1, i1) so that the term corresponds to a connection onto neuron s1 that affects its activity
at time i1. (These are the only terms from the second line that survive.) Once this identification is
made, we calculate the sum over all ri

s for (s, i) 5 (s1, i1) using the identities of Eq. (A.2). In the
end, we obtain Eq. (4.4), which we repeat here:
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Combining this equation with the averaged model (3.4), and using the unbarred shorthand nota-
tion (4.5), we obtain the following expression for C in terms of original model parameters:
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In the rest of our analysis, we will want to replace expressions in terms of �h with expressions in
terms of h. To accomplish this, we need expressions for Ci

s and f ð0;x; �hi
sÞ, as well as their deriv-

atives, that include only effective parameters. To begin, we rearrange Eq. (A.3) and drop the sub-
scripts off s1 and i1,
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Next, we invoke the assumption from Section 3.2 that the derivatives of f (w,x;h) with respect to w
are equivalent to derivatives with respect to some function of x and h. Hence, if we differentiate
the left-hand side of (A.4) with respect w, we need to differentiate those f on the right-hand side
that contain hi

s. Since we will need only a first-order approximation to the first derivative, we just
differentiate the first line of (A.4) to obtain
o�Ci
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X
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We repeat this process to conclude that a zeroth-order approximation of the second derivative
is
o2 �Ci
s ¼ o2Ci

s þOð �W Þ:

Next, we take the expected value of the above three equations by multiplying by ri

s, summing over
all possible values of ri

s, and using the identities of Eq. (A.2). Retaining only the order of approx-
imation that we will need later, we write the results as
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Note that the above equations imply that all the expressions involving �hi
s are a zeroth-order

approximation to the same expressions involving hi
s. Therefore, in any approximation, we

can simply erase the bars off the �h in the highest-order terms without decreasing the order
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of the approximation. To obtain a second-order approximation of �Ci
s, we also need to make a

first-order approximation to the �W j2
s2s term in the first line of Eq. (A.4) (i.e., substitute in the

above first-order corrections for o�Ci
s and f ð0; x; �hi

sÞ). We end up with the effective parameter
equation (4.6) giving the original model parameters in terms of the effective parameters of
the averaged model (3.4).
Appendix B. Derivation of network results

We outline the calculation by which we obtain Eq. (4.8) for the probability of observing a given
sequence rQ of spikes from the measured neurons. We begin with Eq. (4.7) for the probability of
observing rQ, which we rewrite here:
PrðRQ ¼ rQjX ¼ xÞ ¼
X

rP

Y
i

Y
s

C ri
s; f

X
~s

X
j>0

�W j
~ssr

i�j
~s ;x; �hi

s

 ! !
:

Recall that the sum is over all possible values of rP, i.e., over all possible combinations of spikes
from the unmeasured neurons. We expand in �W to obtain
PrðRQ ¼ rQjX ¼ xÞ ¼
X
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þOð �W 3Þ; ðB:1Þ
which is analogous to Eq. (A.1) for the single neuron case. As before, we do not explicitly denote
the causality of the connections, but implicitly assume all �W j

s1s2
¼ 0 for j 6 0.

Eq. (B.1) contains arbitrary digraphs of two or fewer edges hidden in its terms, depending on
the identities of the neurons indexed by various forms of s, which could be measured or unmea-
sured neurons. Proceeding exactly as we did for the single neuron case, we separate out the dif-
ferent ways in which subsets of the indices could correspond to combinations of unmeasured
neurons. Only the identities of unmeasured neurons matter, because we are averaging only over
the activity of unmeasured neurons. For this step of the analysis, we do not modify the factors
involving measured neurons.

For each identified combination of indices that correspond to the activity of a single unmea-
sured neuron at a single time bin, we calculate the sum over all possible number of spikes using
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the appropriate identity in Eq. (A.2). To simplify the notation, we implicitly assume that all indi-
ces that are a form of q are measured indices (q; ~q 2 Q) and all indices that are a form of p are
unmeasured indices (p; ~p 2 P). We also use the following shorthand combinations of the �Ci

s of
Eq. (4.3) YY
�C ¼
q2Q i

�Cðri
q; f ð0; x; �hi
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" #
W¼O

: ðB:2Þ
The probability of observing a sequence of spikes in the measured neurons becomes
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The number of digraphs represented by Eq. (B.3) is enormous, and we do not attempt to charac-
terize them here. Instead, we simplify the equation by writing everything in terms of effective
parameters by using the effective parameter Eqs. (4.6) repeatedly.
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The first step is to replace the �C of the first term with the effective C defined by Eq. (4.9). We
take the product of the first effective parameter Eq. (4.6) over all q1 2 Q and all i, retaining only a
second-order approximation in �W . We write the result in terms of C and its derivatives defined in
(4.9). After distinguishing between all combinations of measured and unmeasured indices, the re-
sult is the following equation:
�C ¼C�
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We substitute this expression into Eq. (B.3) to remove the bars from the first term. We also re-
move the bars from all terms that are second-order in the �W , as we can do that without changing
the order of the approximation. The probability becomes
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The last step is to get rid the bars on the first-order terms. Combining the effective parameter Eqs.
(4.6) with the various definitions of the �C and C (Eqs. (4.3), (B.2), (4.5), and (4.9)), we obtain the
expression
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Applying this formula and the effective parameter Eq. (4.6d), we arrive at Eq. (4.8) for the prob-
ability of observing the measured spike sequence, written solely in terms of effective parameters.
Appendix C. Outline of model-fitting algorithms

The algorithm for determining the parameters of the linear–nonlinear model (5.5) and the lin-
ear–quadratic–nonlinear model (5.6) is a modification of that presented in Ref. [8]. The main dif-
ference was that we used an error function nonlinearity (5.2) rather than an exponential
nonlinearity.

If we fix the parameter Aq, we followed the algorithm in Ref. [8] modified for an error function
nonlinearity in order to find the kernels hi

1;q, hi
2;q, and the parameters yq, �q, and aq. We then fix the

kernels at these estimates but refine the estimates of yq, �q. and aq, obtaining maximum likelihood
estimates of these parameters, conditioned on the fixed values of hi

1;q, hi
2;q, and Aq. (As we cannot

show the maximum likelihood surface has no non-global local maxima, it is important that we
start with good estimates using the procedure modified from Ref. [8].) We end up with values
of all the parameters as a function of Aq. (For the linear–nonlinear model, we set as = 0 and fit
hi

q ¼ hi
1;q, yq, and �q in an analogous manner.)
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Our last step is to attempt to find a maximum likelihood estimate of Aq, where the other param-
eters were a function of Aq as described above. We looked for a maximum on the interval [0,A0],
where A0 was 10 times the time bin size.
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