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Abstract

The complexity of neural networks of the brain makes studying these networks
through computer simulation challenging. Conventional methods, where one models
thousands of individual neurons, can take enormous amounts of computer time even
for models of small cortical areas. An alternative is the population density method
in which neurons are grouped into large populations and one tracks the distribution
of neurons over state space for each population. We discuss the method in general
and illustrate the technique for integrate-and-fire neurons.
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1 Introduction

One challenge in the modeling of neural networks in the brain is to reduce
the enormous computational time required for realistic simulations. Conven-
tional methods, where one tracks each neuron and synapse in the network,
can require tremendous computer time even for small parts of the brain (e.g.

[10]).

In the simplifying approach of Wilson and Cowan [11], neurons are grouped
into populations of similar neurons, and the state of each population is sum-
marized by a single quantity, the mean firing rate [11] or mean synaptic drive
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[8]. Crude approximations of this sort cannot produce fast temporal dynam-
ics observed in transient activity [2,5] and break down when the network is
synchronized [1].

In the population density approach, one tracks the distribution of neurons over
state space for each population [4,7,9,3]. The state space is determined by the
dynamic variables in the explicit model for the underlying individual neuron.
Because individual neurons and synapses are not tracked, these simulations
can be hundreds of times faster than direct simulations. We have previously
presented a detailed analysis of this method specialized to fast synapses [5]
and slow inhibitory synapses [6].

2 The general population density formulation

We divide the state variables into two categories: the voltage of the neuron’s
cell body, denoted by V(t), and all other variables, denoted by X (¢) which
could represent the states of channels, synapses, and dendrites, and any other
quantities needed to specify the state of a neuron.

For each population k, we define p*(v, Z,t) to be the probability density func-
tion of a neuron: [, p*(v,Z,t)dvdZ = Pr (the state of a neuron € Q). For a
population of many similar neurons, we can interpret p as a population den-
sity:

/pk(v, 7, t)dv d¥ = Fraction of neurons whose state € €. (1)
0

From each p*, we also calculate a population firing rate, 7*(¢) the probability
per unit time of firing a spike for a randomly selected neuron.

To implement the network connectivity, we let I/f/i(t) be the rate of excita-
tory/inhibitory input to population k, and Wj; be the average number of
neurons from population j that project to each neuron in population k. Then,
the input rate for each population is the weighted sum of the firing rates of
the presynaptic populations:

Vf/i(t) = Vf/i,o(t) + > ijz/ajk(t/)rj(t —th)at', (2)
JEAE/T 0

where «;(t) is the distribution of synaptic latencies from population j to
population &, Ag/; indexes the excitatory/inhibitory populations, and vk (1)

e/i,0
is any imposed external excitatory/inhibitory input rate to population k.



3 The population density for integrate-and-fire neurons

The voltage of a single-compartment integrate-and-fire neuron evolves via the
equation ¢4 + g,(V — &) + Ge(t)(V — &) + G;(t)(V — &) = 0, where ¢
is the membrane capacitance, g, is the fixed resting conductance, G.;(t) is
the time varying excitatory/inhibitory synaptic conductance, and &, /./; is the
resting/excitatory/inhibitory reversal potential. A spike time Ty, is defined
by V(Ts,) = v, where vy, is a fixed threshold voltage. After each spike, the
voltage V is reset to the fixed voltage v,.s;. The fixed voltages are defined
so that & < &, Vpeser < vy, < &. The synaptic conductances G.;(t) are
functions of the random arrival times of synaptic inputs, Tej i We denote the

state of the synaptic conductances by X whose dimension depends on the
number of conductance gating variables.

4 Population Density Evolution Equation

The evolution equation for each population density is a conservation equation:

dp

o (0 Tt) ==V - T (0,2, Vesi(t)) + (0 = vpeset) Ty (v, T vesu(t)) - (3)

where J = (Jv, J; x) is the flux of probability. Note that the total flux across
voltage, [ Jy (v,f, l/e/i(t)) dZ, is the probability per unit time of crossing v
from below minus the probability per unit time of crossing v from above.
Thus, the population firing rate is the total flux across threshold: r(t) =
[ Jv (vth,f, l/e/i(t)) dZ. The second term on the right hand side of (3) is due
to the reset of voltage to v,.s; after a neuron fires a spike by crossing vy,.

The speed at which one can solve (3) diminishes rapidly as the dimension
of the population density, 1 + dim Z, increases. When dim £ > 0, dimension
reduction techniques are necessary for computational efficiency.

4.1  Fast Synapses

When all synaptic events are instantaneous, dim # = 0. In this case, G./;(t) =
>; Al 6(t —T7),), where the synaptic input sizes A} ; are r.andom numbers
with some given distribution, and the synaptic input rates 77 J; are given by a
modulated Poisson process with mean rate v,/;(t). In this case, no state vari-

ables are needed to describe the synapses, and p = p(v,t) is one-dimensional.
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Fig. 1. Results of a simulation of an uncoupled population with fast synapses. A:
Population firing rate in response to sinusoidally modulated input rates. B: Snap-
shots of the distribution of neurons across voltage for simulation shown in A.

The resulting specific form of (3) (described in detail in [5]), can be solved
much more quickly than direct simulations.

Figure 1 shows the results of a single uncoupled population with fast synapses
in response to sinusoidally modulated input rates. The snapshots in panel B
show that many neurons are near vy, = —55 mV when the firing rate is high
at t = 30 ms.

4.2 Slow Inhibitory Synapses

The assumption of instantaneous inhibitory synapses is often not justified
by physiological measurement. Furthermore, the fact that inhibitory synapses
are slower than excitatory synapses can have a dramatic effect on the network
dynamics [6]. Thus, for the inhibitory conductance G;(t), we may need to use
a set of equations like:

G,

rt = =Gil(t) + S(1) @)
s j j
Ty = )+ Z Al St —1T7) (5)

where 7;; is the time constant for the rise/decay of the inhibitory conductance
(s < 7;). The response of G;(t) to a single inhibitory synaptic input at 7' = 0 is
Gi(t) = ﬁ (e*t/” - e*t/“) , unless 7; = 75, in which case G;(t) = f—;%e*t/”.
In this model, two variables describe the inhibitory conductance state, X (t) =
(Gi(t),S(t)), and each population density is three-dimensional: p = p(v, g, s, ).
Thus, direct solution of equation (3) for p(t) would take much longer than it
would for the fast synapse case.
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Fig. 2. Comparison of population density and direct simulation firing rate for a
model of a hypercolumn in visual cortex. Response is to a bar flashed at 0 deg. A:
Response of the population with a preferred orientation of 0 deg. B: Response of
the population with a preferred orientation of 90 deg. Note change of scale. 7, = 2
ms, 7; = 8 ms. All other parameters are as in [5].

In the case of fast excitatory synapses, r(t) can be calculated from the marginal
distribution in v: fy (v, t) = [ p(v, g, s,t)dgds. Thus, we can reduce the dimen-
sion back to one by computing just fi(v,t). The evolution equation for fy,
obtained by integrating (3) with respect to & = (g, s), depends on the unknown
quantity pqv(v,t), which is the expected value of G; given V' [6]. Nonethe-
less, this equation can be solved by assuming that the expected value of G; is
independent of V, i.e., ugv(v,t) = pa(t), where pg(t) is the expected value
of G; averaged over all neurons in the population. Since the equations for the
inhibitory synapses (4-5) do not depend on voltage, the equation for ug(t)
can be derived directly.

Although the independence assumption is not strictly justified, in practice, it
gives good results. We illustrate the performance of the population density
method with a comparison of the population density firing rates with those
of a direct simulation implementation of the same network. We use a network
model for orientation tuning in one hypercolumn of primary visual cortex in
the cat based on the model by Somers et al. [10]. The network consists of 18
excitatory and 18 inhibitory populations with preferred orientations between
0 and 180 deg [5]. The responses of two populations to a flashed bar oriented
at zero deg are shown in figure 2. The population density simulation was over
100 times faster than the direct simulation (22 seconds versus 50 minutes on
a Silcon Graphics Octane computer) without sacrificing accuracy in the firing
rate.



5 Conclusion

Population density methods can greatly reduce the computation time required
for network simulations without sacrificing accuracy. These methods can, in
principle, be used with more elaborate models for the underlying single neuron,
but dimension reduction techniques, like those considered here, must be found
to make the method practical.
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