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Abstract
We present a method to dissociate the sign-dependent (linear or odd-order)
response from the sign-independent (quadratic or even-order) response of a
neuron to sequences of random orthonormal stimulus elements. The method
is based on a modification of the classical linear–nonlinear model of neural
response. The analysis produces estimates of the stimulus features to which
the neuron responds in a sign-dependent manner, the stimulus features to which
the neuron responds in a sign-independent manner and the relative weight of
the sign-independent response. We propose that this method could be used to
characterize simple and complex cells in the primary visual cortex.

1. Introduction

A highly idealized model of neuronal response to a stimulus is the linear–nonlinear model.
In this model, spiking probability is a linear function of the stimulus, composed with a
sigmoidal nonlinearity to ensure nonnegative probabilities. The linear–nonlinear neuron
behaves essentially like a linear system. It has virtually opposite responses to stimuli with
opposite signs. Its response to a sum of stimuli can be largely predicted by its response to each
stimulus individually.

Clearly most neurons, even in primary sensory regions, are not well represented by a
linear–nonlinear model. In the primary visual cortex, for example, only simple cells respond
similarly to a linear–nonlinear model. Complex cell response is more fundamentally nonlinear
and cannot be captured by a linear–nonlinear model.

One feature of complex cells is their indifference to the contrast sign of the visual stimulus.
For example, an idealized complex cell responds similarly to a black or a white bar on a
grey background. We extend the linear–nonlinear framework to capture this sign-independent
response. We allow the neuron’s response to be a linear function not only of the stimulus values
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but also of locally squared values (i.e. pixel-by-pixel squaring) of the stimulus (composed with
a sigmoidal nonlinearity as before). This squaring gives sign independence with only a small
modification of the linear–nonlinear model.

We view this linear–quadratic–nonlinear model strictly as a phenomenological model of
the sign independence and do not view a neural basis for squaring as essential for the validity of
the approach. In essence, we use the linear–quadratic formalism simply to separate influences
that are odd-order in the input from influences that are even-order. The advantage of this
model is that it can be completely reconstructed from its response to a random sequence of
orthonormal stimulus elements (cf [20]), similar to the reconstruction of the linear–nonlinear
model from a white noise stimulus (e.g. [3, 16]).

The reconstruction process leads to estimates of the stimulus features to which the neuron
responds in a sign-dependent and sign-independent manner. In addition, we obtain a measure,
called the quadratic index of nonlinearity (QIN), that indicates the fraction of neural response
that is independent of contrast sign (i.e. even-order in the input). The QIN is a quantitative
gauge of nonlinear receptive field organization that can be estimated from neural response to
a large class of stimuli (random sequences of orthonormal stimulus elements).

In section 2, we specify the proposed linear–quadratic–nonlinear model and define the
random orthonormal stimulus. In section 3, we analyse the model to determine a method to
reconstruct its parameters from measured spike times. In section 4, we demonstrate the ability
of the method to determine the model even when the assumptions underlying the analysis are
relaxed. We discuss the results in section 5.

2. Specification of model

2.1. Model of neural response

A traditional model for simple cells in the primary visual cortex is a linear function of the input
composed with a static nonlinearity. If we let the response R of a neuron be 1 if the neuron
spikes at a given time point and be 0 otherwise, then this model can be written as2

Pr(R = 1|X = x) = g(h · x), (1)

where the vector X represents the recent spatio-temporal input, such as the pixel values for
each refresh of a computer monitor. The linear function of the input is represented by the
convolution with a kernel h. By writing the convolution as a dot product h · X, we are
implicitly viewing the temporal index of the input as going backward in time. The function
g(·) is some given nonlinear function.

Note that X does not represent the entire input sequence over the course of an experiment.
It represents only the recent input so that the dot product h · X includes the entire memory of
the system.

We propose an extension that accounts for the sign-independent response of complex cells.
We allow the argument of the nonlinearity to include a linear function of locally squared values
of the input, i.e. pixel-by-pixel squared input values. We add a term to model (1), obtaining
the spiking probability

Pr(R = 1|X = x) = g
(√

1 − αh1 · x +
√

αh2 · x2
)
. (2)

For local squaring, we use the notation x2 to indicate the vector with components that are the
components of x squared. The kernels h1 and h2 are normalized so that the variances of h1 ·X
and h2 · X2 are both 1.

2 We use capital letters to indicate random quantities.
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The parameter α, with 0 � α � 1, is the QIN. It measures a particular departure from
linearity of the neural response. When α = 0, we regain the traditional linear–nonlinear model
(equation (1)) of a simple cell. When α = 1, the neuron responds to the stimulus independent
of its sign, like a prototypical complex cell. With intermediate values of the QIN, the neural
response contains both sign-dependent and sign-independent elements. When α = 1/2,
the variance of the sign-dependent and sign-independent components of the nonlinearity
argument are equal. The parameter α is introduced into the equation so that the variance
of the nonlinearity argument is always 1 (shown below).

We demonstrate below that model (2), including the QIN, can be reconstructed from the
spike response to a random sequence of orthonormal stimulus elements. Thus, the QIN can
be easily estimated from experiments to index the nonlinearity of the neurons’ response. As
shown below, the value of the QIN is not limited to neurons whose response is well described
by equation (2) because the final equation for α can be interpreted in a model-independent
manner.

2.2. Description of stimulus

The motivation behind this analysis is the random grating stimulus developed by Ringach et al
[20]. In their experiments, sinusoidal gratings specified by a set of Hartley basis functions are
randomly flashed on a computer monitor. We exploit the fact that the Hartley basis functions
are orthonormal to reconstruct our linear–quadratic–nonlinear model (equation (2)) from such
experiments.

In fact, orthonormality is the only condition we need from the Hartley basis functions. The
analysis we describe applies to a random sequence from any set of stimulus elements as long
as those elements are orthonormal. With such an orthonormal set, the required calculations
can be performed completely in the space defined by the coefficients of the stimulus elements
(the Fourier domain for the case when the stimulus set contained sinusoidal gratings). In that
coefficient space, the stimulus is extremely simple, analogous to a one-dimensional random
sequence of bright or dark dots. We will exploit this simple stimulus to reconstruct model (2)
including the QIN.

We first describe the stimulus in general. The stimulus ensemble is composed of m
orthonormal vectors {ê j} and their opposites {−ê j}. By orthonormal, we mean that

〈ê j , êk〉 =
{

0 if j �= k,

1 if j = k,
(3)

where 〈·, ·〉 is the standard vector inner product. We write the 2m vectors of the stimulus
ensemble as

{bê j : j = 1, . . . , m and b = −1, 1},
where b is a binary variable denoting the sign of the stimulus element.

We require the stimulus ensemble to include members, called blanks, which are known to
have no effect on the neuron’s activity; the neuron’s response is unaffected if a blank stimulus
element were replaced by a completely blank stimulus or vice versa. Denote the set of indices
corresponding to blanks by �blank so that the set of blanks is {bê j : j ∈ �blank, b = −1, 1}.
For the actual stimulus, these members could be true blanks (vectors with all components
zero), but the analysis is simpler if we treat these members as part of the orthonormal set.

The analysis is easiest to conceptualize if one views each member of the stimulus ensemble
as a single dot in any of m positions along a line. We will proceed with our analysis as if this
were the case. A general orthonormal stimulus ensemble is equivalent to this dot stimulus
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Figure 1. Example stimulus. Each horizontal line corresponds to a time point. Grey squares
indicate 0 s, white squares indicates 1 s and black squares indicate −1 s. Squares to the right of the
dotted line represent ‘blanks’ to which the cell does not respond. The stimulus vector X represents
the stimulus at the previous n time steps.

when viewed in the space defined by the coefficients of the stimulus elements. We address the
general case in more detail in section 3.6 and appendix A.2.

Let ê j be an m-dimensional vector that is zero except for the j th component so that it
corresponds to a dot at position j . The stimulus member bê j will be a white or black dot at
position j , depending on the sign of b. It is known a priori that the neuron does not respond
to dots in positions j ∈ �blank. (Either these positions are well outside a neuron’s receptive
field or a completely blank stimulus was actually displayed instead of the dots.)

The input or stimulus to a neuron is a random sequence of vectors from the stimulus
ensemble (see figure 1). Since the random stimulus and the neuronal response modelled below
are stationary, we focus our attention at some particular time, which will be representative of
any time. Assume that the response of a neuron at that time depends only on the previous n
stimulus elements. Denote by X the mn-dimensional vector (really a matrix) of these stimulus
elements. Note that X is only the recent stimulus corresponding to those n time points within
a neuron’s memory. In an actual experiment, one employs a much longer stimulus sequence,
which we view as many realizations of the vector X.

Given that each of the n previous time steps could contain one of 2m possible stimulus
elements, the recent stimulus X could be (2m)n different combinations of stimulus elements.
For each time step, the stimulus element is chosen randomly and independently, so that a given
element is chosen with probability 1/(2m). Therefore, each possibility for X is equally likely,
occurring with probability 1/(2m)n.

2.3. Enumeration of recent stimulus possibilities

To reconstruct model (2), we will compute expected values of the functions of the (recent)
stimulus X. To facilitate the computations, we use the following notation to enumerate the
possible values of X.

Denote by Xi
j the component of the input X at position j and time i (i.e. i time steps

previous to the given time)3. Xi
j could be −1, 0 or 1, corresponding, for example, to a black,

grey or white pixel, respectively.
Next, let ei

j indicate the occurrence of a dot at position j and time i , i.e. ei
j is a

mn-dimensional vector that is zero except for the value 1 at position j and time i . A particular

3 Throughout this paper, we will use subscripts to denote space indices and superscripts to denote time indices.



Measuring linear and quadratic contributions to neuronal response 677

realization of X is a sequence of signed dots so that X can be written as a sum of vectors ei
j

with binary coefficients.
A particular realization of X can be achieved as follows. For a given time point i , roll

a m-sided die to determine the position of the dot, then flip a coin to determine the sign of
the dot. Repeat this procedure for each of the n time points. We record the sequence of dot
locations in the vector J and the sequence dots signs in the vector B. We denote the set of all
possible sequences of dot positions by J n

m and the set of all possible sequences of dot signs by
Bn .

Formally, J is an n-dimensional vector with each component J i ∈ {1, 2, . . . , m} denoting
the randomly chosen position at time i . To denote the set of all possible sequences of dot
positions, J n

m is the set all such n-dimensional vectors with components in {1, 2, . . . , m}.
Similarly, B is an n-dimensional vector with components Bi ∈ {−1, 1} and Bn is the set of all
such binary n-dimensional vectors. Note that J n

m has mn elements and Bn has 2n elements.
For a given sequence of dot positions J and dot signs B, the recent input X can be written

as

X =
n∑

i=1

Biei
J i ,

as we simply add up dots at time i with position J i and sign Bi . We write the (2m)n equally
likely possibilities for X as

X ∈
{ n∑

i=1

Biei
J i : J ∈ J n

m&B ∈ Bn

}
. (4)

3. Analysis of model

3.1. Overcoming a singular stimulus auto-covariance

For the linear–nonlinear model of equation (1), cross-correlation methods are commonly used
to reconstruct the model [1, 3, 5–7, 9, 12, 17, 20, 24]. In the special case where g(·) is a linear
function, these techniques can be used to reconstruct the model even when the stimulus is as
complicated as natural stimuli [19, 23].

To attempt to use these methods for our model and stimulus, one can reduce the linear–
quadratic–nonlinear model of equation (2) to a linear–nonlinear model of equation (1) through
a mathematical trick. One simply views the stimulus as including not only X but also the
squared values X2. The model of equation (2) is a linear–nonlinear model of this enlarged
‘virtual’ stimulus. The statistics of this enlarged stimulus follow directly from the statistics of
the physical stimulus X.

Unfortunately, a direct application of the existing methods to this system fails. First, since
the stimulus is not rotationally invariant, one must worry that a nonlinear g(·) could skew the
estimation of the linear kernel [3] (but cf [20]). Second, and more importantly, the solution is
ill-posed due to the statistical structure of the random orthogonal stimulus sequence.

The ill-posedness results from the strong dependence among pixel values in a given frame
(viewing the stimulus as a sequence of dots, where each dot corresponds to one pixel, as in
figure 1). If, for a given frame (horizontal line in figure 1), one observes a nonzero pixel at
a given location, one immediately knows that all other pixels are zero (grey) because only
one pixel is ‘on’ per frame. In the case where model (2) is linear in the physical stimulus
(α = 0), this dependence is benign because of cancellation between positive and negative
pixel values [20]. For nonzero α, the quadratic term removes sign information so that this
dependence among pixels becomes critical.
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To illustrate the problem, we examine the special case when α = 1. In this case, the
system is a linear–nonlinear function of the squared pixel values

Pr(R = 1|X = x) = g(h2 · x2),

which we write as

Pr(R = 1|Z = z) = g(h2 · z), (5)

where Z = X2. In this notation where Z appears as the stimulus, we are viewing all nonzero
pixels as being positive, i.e. turning all black pixels of figure 1 into white pixels.

Ignoring the fact that this stimulus is not rotationally invariant (so that a nonlinear g(·)
may skew this estimation procedure [3]), we could attempt to recover the kernel h2 from
stimulus–spike correlations. To accomplish this, we must multiply by the inverse of the
stimulus auto-covariance matrix. However, because of the strong dependence among pixel
values of this stimulus, the auto-covariance matrix for Z is singular. (One does not encounter
this problem when α = 0 because oppositely signed values of X cancel each other, leaving
an auto-covariance matrix for X that is proportional to the identity.)

In the special case where the system’s memory is equal to a single frame (n = 1), the
auto-covariance matrix of Z is proportional to an m × m matrix with m − 1 on the diagonal
and −1 everywhere else. (Recall that m is the number of dot locations.) Since a given row of
the matrix is equal to −1 times the sum of all other rows, the matrix is singular. For the general
case (n > 1), since frames are independent, the auto-covariance matrix is block-diagonal,
where each block is the above singular matrix.

The singularity of the stimulus auto-covariance matrix is not limited to the case when
α = 1. To apply the standard methods to model (2) with general α, one must use the enlarged
‘virtual’ stimulus mentioned above that includes both X and Z . As X and Z are uncorrelated,
the enlarged stimulus auto-covariance matrix contains the same rows as those for Z (padded
with zeros). Hence, the auto-covariance matrix is still singular.

This singularity was recognized by Ringach et al [18] when they attempted a reverse-
correlation procedure nearly identical to correlating with Z . (They ignored the phase
information of Hartley basis functions which includes ignoring the sign information of X.)
To compensate, they introduced the notion of blanks, defined exactly as our blank stimulus
elements. By using the response to blanks as a baseline, they were able to circumvent the
singularity in the auto-covariance matrix.

The manner in which to compensate for the strong dependence among stimulus pixels
depends on the form of the nonlinearity g(·). Ringach et al [18] subtracted off the logarithm
of the response to blanks, justifying the logarithm based on the detection of deviations from
the baseline. Their use of the logarithm is essentially equivalent to assuming an exponential
form of g(·), which motivated our use of the exponential function for g(·) (see below).

Besides the above justification, the crucial reason for using an exponential g(·) is practical.
An exponential form for g(·) allows us to solve a large system of nonlinear equations explicitly,
both avoiding the challenge of a numerical solution and providing an intuitive final solution.
Moreover, our simulations, below, demonstrate that the result is robust to changes in the shape
of the nonlinearity g(·).
3.2. Outline of procedure

The procedure we implement is similar to our approach to reconstructing a linear–nonlinear
model in response to white noise [16]. Although the structure of the stimulus and the quadratic
term of model (2) require more detailed manipulations, we again simply calculate analytic
expressions for experimentally measurable stimulus–spike statistics and solve those equations
for the model parameters.
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We obtain expressions for the mean firing rate E{R}, the correlation of the spikes with the
positive stimuli (e.g. white dots of figure 1), and the correlation of the spikes with the negative
stimuli (e.g. black dots). Recall that each stimulus component Xi

j , viewed as the coefficient
of the j th stimulus element, can assume the values −1, 0 and 1. The expression Xi

j(Xi
j + 1) is

2 when Xi
j = 1 and is zero otherwise. The expression Xi

j (Xi
j − 1) is 2 when Xi

j = −1 and is
zero otherwise. As a result, E{Xi

j(Xi
j + 1)R} is the correlation of the spikes with the positive

stimuli and E{Xi
j (Xi

j − 1)R} is the correlation of the spikes with the negative stimuli4.
To isolate the sign-dependent or linear portion of the response, we subtract the correlation

with the negative stimuli from the correlation with the positive stimuli, compensating for an
exponential nonlinearity. This subtraction eliminates the sign-independent response. The
result is proportional to the linear kernel h1 (see equation (2)).

Then, to isolate the sign-independent, or even-order, portion of the response, we add
the correlations with both positive and negative stimuli, compensating for an exponential
nonlinearity. After accounting for the baseline response to blanks, we will have eliminated the
linear response. The result is proportional to the quadratic kernel h2.

We calculate the QIN α as the fraction of variance contained in the sign-independent
portion. By factoring in the mean firing rate E{R}, we can also estimate parameters describing
the exponential function g(·).

3.3. Calculation of stimulus–spike statistics

To carry out this procedure, we calculate analytic expressions for the mean firing rate and
the correlation of spikes with positive and negative stimuli. The calculations are based on
model (2) and the statistics of the recent stimulus X. We also derive equations resulting from
our normalization condition that h1 ·X and h2 ·X2 have unit variance. The goal of this analysis
is to solve for the model parameters from measurements of these stimulus–spike statistics.

3.3.1. The mean firing rate. We first calculate the expression for the mean firing rate E{R}.
Given model (2), the mean firing rate is simply the average of the spiking probability

g
(√

1 − αh1 · X +
√

αh2 · X2
)

taken over all (2m)n possibilities of X. As described in section 2.3, a particular realization
of the recent input X is given by a sequence of dot positions J and dot signs B and can be
written as

X =
n∑

i=1

Biei
J i , (6)

where ei
j is the vector denoting a dot at position j at time i . The component Xk

j is nonzero
only if j = J k , in which case Xk

j = Bk .
Consequently, the convolution h1 · X (written as a dot product due to our backward time

convention for X) is simply

h1 · X =
n∑

k=1

m∑
j=1

hk
1, j Xk

j =
n∑

k=1

Bkhk
1,J k .

4 We use the term correlation loosely, as we have not even subtracted off the product of the expected values.
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(We denote by hk
1, j the component of h1 corresponding to time point k and space point j .)

Since (Xk
J k )

2 = (Bk)2 = 1, the convolution h2 · X2 is

h2 · X2 =
n∑

k=1

m∑
j=1

hk
2, j (Xk

j )
2 =

n∑
k=1

hk
2,J k .

All (2m)n possible values of X are given by the set of all possible sequences of dot
positions (J ∈ J n

m ) combined with the set of all possible sequences of dot signs (B ∈ Bn).
Taking the average of the spiking probabilities over these (2m)n values, we find that the mean
firing rate is

E{R} = E
{

g
(√

1 − αh1 · X +
√

αh2 · X2
)}

= 1

(2m)n

∑
J∈J n

m

∑
B∈Bn

g

(√
1 − α

n∑
k=1

Bkhk
1,J k +

√
α

n∑
k=1

hk
2,J k

)
. (7)

The sum defining the mean response is intractable for any practical use. Even with just
modestly sized m and n, the number of terms in the sum is enormous. For example, with
m = 100 and n = 5, the number of terms is (2m)n = 3.2 × 1011. We must approximate the
sum to make it manageable.

To calculate E{R}, we assume that

YR = √
1 − αh1 · X +

√
αh2 · X2 (8)

can be approximated by a Gaussian random variable. We calculate its mean µR and standard
deviation σR and approximate

E{R} = E{g(YR)} ≈ 1

σR

√
2π

∫
g(y) exp

(
− (y − µR)2

2σ 2
R

)
dy.

In general, we would not expect n to be large enough for the central limit theorem to
justify our approximation. The large sum in equation (7) merely means that partial sums
approximating E{R} should be nearly Gaussian. Nonetheless, approximating YR as Gaussian
yields good results even in cases where this approximation is not justified, as demonstrated in
section 4.2.

We divide YR into the component from h1 and the component from h2:

YR = √
1 − αYR1 +

√
αYR2, (9)

where

YR1 = h1 · X and YR2 = h2 · X2. (10)

As stated in the definition of model (2), the kernels h1 and h2 are normalized so that the
variance σ 2

R1 of YR1 and the variance σ 2
R2 of YR2 are both 1. Since YR1 and YR2 are uncorrelated

(though clearly not independent, see appendix A.1), the variance of YR is the weighted sum of
their variances

σ 2
R = (1 − α)σ 2

R1 + ασ 2
R2 = 1.

The definition of α was motivated by this result, ensuring that, independent of α, the variance
of the nonlinearity argument YR is always one.

As shown in appendix A.1, the mean µR1 of YR1 is zero and the mean µR2 of YR2 is

µR2 =
n∑

k=1

h̄k
2, (11)
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where h̄k
2 is the average value of h2 at time point k

h̄k
2 = 1

m

m∑
j=1

hk
2, j . (12)

Hence, the mean µR of YR is simply the sum

µR = √
1 − αµR1 +

√
αµR2

= √
α

n∑
k=1

h̄k
2. (13)

When we approximate YR as a Gaussian random variable with mean µR and variance
σ 2

R = 1, the mean firing rate of our model neuron is

E{R} = 1√
2π

∫
g(y)e−(y−µR)2/2 dy. (14)

3.3.2. Stimulus–spike correlations. We repeat the same procedure for the correlation of spikes
with the positive stimuli at position j and time i . We obtain an expression for E{Xi

j(Xi
j +1)R}

as an average of

Xi
j (Xi

j + 1)g
(√

1 − αh1 · X +
√

αh2 · X2)
over all (2m)n possible realizations of the recent stimulus X. The resulting sum includes only
those stimulus realizations where a positive stimulus element occurred at position j and time
i (i.e. when the vector J satisfies J i = j and the vector B satisfies Bi = 1). In those cases
Xi

j (Xi
j + 1) = 2; otherwise Xi

j(Xi
j + 1) = 0. Hence

E{Xi
j (Xi

j + 1)R} = E
{

Xi
j(Xi

j + 1)g
(√

1 − αh1 · X +
√

αh2 · X2
)}

= 2

(2m)n

∑
J∈J n

m
J i = j

∑
B∈Bn

Bi =1

g

(√
1 − α

n∑
k=1

Bkhk
1,J k +

√
α

n∑
k=1

hk
2,J k

)

= 1

m

1

(2m)n−1

∑
J∈J n

m
J i = j

∑
B∈Bn

Bi =1

g
(√

1 − αhi
1, j +

√
αhi

2, j + YX i R

)

(15)

where, for the last expression, we pulled out the known terms from time i . The remaining
expression is

YX i R = √
1 − α

n∑
k=1
k �=i

Bkhk
1,J k +

√
α

n∑
k=1
k �=i

hk
2,J k . (16)

We obtain a similar expression for the correlation of the spikes with the negative stimuli, only
with a negative sign in front of the hi

1, j term because Bi = −1. Thus, the stimulus–spike
correlations are

E{Xi
j (Xi

j ± 1)R} = 1

m

1

(2m)n−1

∑
J∈J n

m

J i= j

∑
B∈Bn

Bi =−1

g
(
±√

1 − αhi
1, j +

√
αhi

2, j + YX i R

)
. (17)

Note that the stimulus–spike correlations are written as 1/m times the average spiking
probability over all (2m)n−1 realizations of the recent stimulus, given that the stimulus for
time point i is known.
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As with the mean rate calculation, we approximate YX i R (which is exactly YR with the
i th time point removed) as Gaussian even though it is not strictly justified. The calculation
of the mean µX i R and variance σ 2

X i R of YX i R are given in appendix A.1, although we end up
canceling out these expressions in our final calculations below.

Approximating YX i R as Gaussian, our two stimulus–spike correlation measures become

E{Xi
j (Xi

j ± 1)R} = 1

mσX i R

√
2π

∫
g(y) exp

(
−

(
y ∓ √

1 − αhi
1, j − √

αhi
2, j − µX i R

)2

2σ 2
X i R

)
dy.

(18)

Since j = 1, . . . , m and i = 1, . . . , n, we have a total of 2mn equations of this form.

3.3.3. Normalization conditions for the kernels. The kernels h1 and h2 are normalized by
the condition that the variances of YR1 and YR2 are 1. Appendix A.1 shows that the variance
of YR1 is

σ 2
R1 = ‖h1‖2

m
(19)

and the variance of YR2 is

σ 2
R2 = σ 2

t (h2), (20)

where ‖v‖ is the standard vector norm5 of v and

σt (v) =
{ n∑

k=1

[
1

m

m∑
j=1

(vk
j )

2 −
(

1

m

m∑
j=1

vk
j

)2]}1/2

. (21)

The expression σ 2
t (X) is the sum of the variance of each time slice of v. For the proper

normalization, we scale the kernels so that

‖h1‖ = √
m and σt (h2) = 1. (22)

3.4. Model reconstruction

If we assume that the spiking probability of a neuron is given by equation (2), then
equations (14) and (18) give the expected values of the mean rate and stimulus–spike
correlations measured in response to a random sequence of orthonormal images. If we estimate
these statistics by measuring the spike times of a neuron, we can calculate the model parameters
that would lead to those measurements.

Equations (14), (18) and (22) give 2mn + 3 conditions on the model parameters. From
these conditions we need to estimate two m × n kernels (h1 and h2), the QIN α and the
nonlinearity g(·). We need 2mn conditions to specify the h j . With one condition required for
α, we have two conditions left to specify the nonlinearity g(·). We have enough information
to pick g(·) out of a two-parameter family (just like the case of the linear–nonlinear model in
response to white noise [16]).

3.4.1. Blanks enable well-posed problem. Given a particular choice for a two-parameter
nonlinearity family of nonlinearities g(·), equations (14), (18) and (22) are a system of 2mn +3
coupled nonlinear equations for 2mn + 3 unknowns. One might imagine that, given estimates
of the stimulus–spike statistics, they could be numerically solved for the model parameters.
5 Given that we are using two indices, ‖v‖2 = ∑

j,k(v
k
j )

2.
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However, even if the system of equations were well-posed, solving the hundreds or thousands
of coupled nonlinear equations could prove an exceedingly difficult task.

In fact, we run into the same problem discussed in section 3.1, where we attempted to
solve the linear–nonlinear system using the expanded ‘virtual’ stimulus. Just as the stimulus
auto-covariance matrix was singular, so also the above system of equations is ill-posed. If one
assumes that g(·) is linear, the resulting matrix to be inverted is singular. From the 2mn + 3
equations, there are really only 2mn + 3 − n linearly independent conditions (this case is
equivalent to inverting the auto-covariance matrix of the expanded stimulus). The system
cannot be unambiguously solved for the 2mn + 3 model parameters.

For a nonlinear g(·), one could linearize around a solution to obtain a linear system valid
close to the solution. The linear equations would be nearly identical to the equations for
linear g(·), differing only because the slope g′(·) might vary for the different nonlinearity
arguments. For a realistic nonlinearity, the slope g′(·) will change little across the limited
range of nonlinearity arguments in our equations. If the matrix from this local problem is
not singular, it will be nearly singular and the solution will be sensitive to small measurement
errors.

We use the blank stimuli to add the necessary n conditions and make the solution for
the model parameters well-posed. A position j simply corresponds to the position of a blank
if j ∈ �blank. Since we assume the neuron’s response is not influenced by dots in a blank
position, the correlation with positive blank stimuli is identical to the correlation with negative
blank stimuli, E{Xi

j(Xi
j + 1)R} = E{Xi

j(Xi
j − 1)R} = E{(Xi

j)
2 R}. For each time i , we

average this stimulus–spike correlation over all blank locations j ∈ �blank. (In cases where
the blanks are not true blank stimuli, one might use a median rather than an average to remove
the effect of the neuron responding to a few of the ‘blank’ stimuli, cf [18].)

The average stimulus–spike correlation for blank stimuli at time i is

E{K i} = 1

|�blank|
∑

j∈�blank

E{(Xi
j)

2 R}, (23)

where |�blank| is the number of positions corresponding to blank stimuli. The assumption
that a neuron does not respond to a stimulus at position j is equivalent to assuming that
hi

1, j = hi
2, j = 0 for all i . From equation (18) for zero kernels, the blank stimulus–spike

correlation at time i is

E{K i} = 1

mσX i R

√
2π

∫
g(y) exp

(
− (y − µX i R)2

2σ 2
X i R

)
dy. (24)

Equation (24) provides the n additional conditions needed to reconstruct the model parameters.

3.4.2. An exponential nonlinearity. Even with a well-posed problem, solving the
approximately 2mn nonlinear equations numerically would be challenging. To avoid this
difficulty, we choose a family of nonlinearities where the equations can be solved analytically.
Since such a choice will yield explicit formulae for the model parameters, it will also give
intuitive meaning to the final results.

Although a sigmoidal nonlinearity would, in general, be required to match the saturation of
neural firing rates when driven strongly, the low firing rates of neurons in response to random
stimuli makes modelling the saturation unnecessary. Instead, we use a simple exponential
nonlinearity. Though this could lead to probabilities greater than one in equation (2), we
assume the firing rate is sufficiently low and the temporal discretization sufficiently fine to
preclude this exception.
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3.4.3. Solution for model parameters. Assume that g(y) is an exponential function

g(y) = eβ(y−γ ) (25)

with parameters β and γ . By a completion of the square in the exponent, equations (18)
and (24) become

E{Xi
j (Xi

j ± 1)R} = exp
(
β
[
±√

1 − αhi
1, j +

√
αhi

2, j

])
E{K i}

E{K i} = 1

m
exp

(
β2σ 2

X i R

2
+ β(µX i R − γ )

)
so that

β
[
±√

1 − αhi
1, j +

√
αhi

2, j

]
= log

(
E{Xi

j(Xi
j ± 1)R}

E{K i}
)

. (26)

The kernels are proportional to the sum or difference of the two signed forms of equation (26).
Define v1 and v2 as the vectors formed by one-half the difference and sum, respectively:

vi
1, j = 1

2 log E{Xi
j(Xi

j + 1)R} − 1
2 log E{Xi

j(Xi
j − 1)R}, (27)

vi
2, j = 1

2 log E{Xi
j(Xi

j + 1)R} + 1
2 log E{Xi

j(Xi
j − 1)R} − log E{K i}. (28)

Note that the blanks dropped out of the equation for v1. The kernels h1 and h2 are
proportional to the vectors v1 and v2, respectively. Due to the normalization conditions from
equation (22), the originally scaled kernels are

h1 =
√

mv1

‖v1‖ and h2 = v2

σt(v2)
, (29)

where σt (v) is defined by equation (21). The normalization conditions of h1 and h2 mean that

‖v1‖2 = mβ2(1 − α) and σ 2
t (v2) = β2α

so that the QIN is given by

α = mσ 2
t (v2)

‖v1‖2 + mσ 2
t (v2)

. (30)

We also obtain for free that β = [‖v1‖2/m + σ 2
t (v2)]1/2. From a completion of the square

in equation (14), the second nonlinearity parameter is γ = β/2 + µR − log E{R}/β, where
µR is given by equation (13).

3.5. Model-independent interpretation

The value of the analysis is not limited to neurons whose response is well described by
equation (2). Both the equations (29) for hk and (30) for α can be interpreted apart from
equation (2) used to derive the formulae.

Linear or odd-order behaviour implies responding to Xi
j = 1 in the opposite way as to

Xi
j = −1 (though the nonlinearity eliminates true symmetry). Sign-independent or even-order

behaviour implies responding to Xi
j = 1 in the same way as Xi

j = −1.
The formula (27) for v1 is simply the correlation with the positive stimuli minus the

correlation with the negative stimuli, compensating for an exponential nonlinearity. The sign-
independent response is removed by formula (27) so that v1 includes only the linear response.

The formula (28) for v2 is the sum of the correlations with both positive and negative
stimuli, compensating for an exponential nonlinearity and the baseline response to blanks.
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The linear response is removed by formula (28) so that v2 includes only the sign-independent
response.

The linear and quadratic kernels are proportional to v1 and v2, respectively. The
normalization in equation (29) is unimportant except in the context of equation (2).

The QIN α defined by equation (30) is simply the relative weight of the sign-independent
portion of the response to the total response. Although the motivation for weighting the linear
portion v1 differently than the sign-independent portion v2 can be seen only from analysis of
equation (2), the fundamental notion of α as the relative weight of a sign-independent response
can be read directly from equation (30).

3.6. Further generalizations

3.6.1. General orthonormal stimuli. In the above analysis, we assumed that the orthonormal
vectors ê j composing the stimulus were simply dots. In appendix A.2, we show that the analysis
carries through for any orthonormal set, such as Hartley functions (sinusoidal gratings) [20].

The only difference between dot stimuli and the general orthonormal stimuli is the
calculation of the kernel h2. When the stimuli are not dots, we cannot calculate h2 in spatial
coordinates. We can calculate h2 only in the coordinates given by the stimulus set, which we
denote by h̃2. We can obtain the kernel h1 in stimulus coordinates (denoted by ĥ1) and in
spatial coordinates as well as the QIN α. See appendix A.2 for more details.

3.6.2. Slower stimuli. In the model of equation (2), time must be discretized finely enough
(intervals of the order of a millisecond) so that a neuron can spike at most once during a
time interval. The analysis so far assumes that the stimulus frame changes every time step. In
reality, experiments are designed with a much slower stimulus, with a frame interval in the tens
of milliseconds. The slow stimulus is necessary not only due to limited monitor refresh rates
but also to increase neural response to the random stimuli. Given a fixed maximal stimulus
value, the effective power of the stimulus decreases with the frame rate, reducing neuronal
response.

In appendix A.3, we generalize to the case when the stimulus is slower than the
measurement interval. In the end, we must only account for the fact that we effectively
over-count the time intervals by discretizing too finely. The kernels are the same up to an extra
normalization factor that accounts for the over-counting, and the expression for the QIN α is
unchanged.

4. Demonstration and test of method

To test the accuracy of the proposed method, we simulated neurons with spiking probability
given by equation (2) and analysed the resulting spike times to reconstruct the model
parameters. To facilitate the presentation of results, we used one-dimensional stimulus
elements. We simulated neurons responding to random sequences of dots and to random
sequences of sinusoids.

The kernels used in the simulation were chosen as one-dimensional caricatures of linear
kernels measured in simple cells. They were given by

hk, j (t) = te−t/τ e− j2/2σ 2
cos(2π f j + φk) (31)

for k = 1, 2. The kernel and the stimulus contained 100 points in space. We discretized the
kernel into 100 time slices at a resolution of 1 ms and normalized the results so that the hk
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satisfied the appropriate normalization conditions (equations (22), (59) or (64)). Except where
stated otherwise, we use the parameters τ = 20 ms, σ = 10, f = 0.04, φ1 = 0 and φ2 = π/2.

In these demonstrations, we specify the nonlinearity parameters after µR (defined by
equation (13)) has been subtracted from the nonlinearity argument. In other words, we specify
the parameters of g̃ defined by

g̃(y) = g(y − µR). (32)

With this definition, the argument of g̃ always has zero mean and variance one, independent
of hk and α. By specifying g̃ instead of g, the firing rate of the neuron depends only on the
nonlinearity and will not vary as we change hk or α.

The above analysis is based on calculating the exact expected values of stimulus–spike
statistics. In practice, one is limited to approximations of these expected values calculated
from a finite data set. One must account for this limitation in order to achieve accurate results.
First, the noisy estimates of the stimulus–spike statistics will lead to bias in the estimates of
model parameters if one simply replaces the expected values with the noisy estimates. Second,
one might encounter the situation where the estimate of E{Xi

j(Xi
j ±1)R} is zero (i.e. no spikes

occurred in any time bin i units of time after presentation of a white or black dot at position j ).
Given the assumption of an exponential nonlinearity, a zero spiking probability does not exist
and equations (27) and (28) do not make sense when E{Xi

j (Xi
j ±1)R} = 0. Steps to reduce the

bias from parameter estimates and correct zero correlation estimates are given in appendix B.

4.1. Initial demonstration

As an initial demonstration, we simulated a neuron with spiking probability given by
equation (2) and standard kernel parameters specified above, using a temporal discretization
of 1 ms. The nonlinearity was a exponential nonlinearity g̃(y) = eβ(y−γ ) with β = 1 and
γ = 5, so the average firing rate was approximately 11 spikes s−1. The stimulus was a one-
dimensional random dot stimulus with a period of 1 ms. Since the stimulus period equalled
the temporal discretization, this example corresponds to the original derivation of the method.

We simulated the neuron with QIN α ranging between 0 and 1. We calculated the model
parameters from the spike times after 10 min and 1 h of simulated time,obtaining approximately
7000 and 40 000 spikes, respectively. Figure 2 shows both the original simulated kernels and
the kernels calculated with equations (29) for a few examples. With α = 0.5, the calculated
kernels match the qualitative features of the simulated kernels after 10 min (figures 2(A), (B))
and match quantitatively after 1 h (figures 2(C), (D)).

When α = 0.9, most of the response is determined by the quadratic kernel h2 and little of
the response is determined by the linear kernel h1. Consequently, after 10 min of simulated
time, the calculated quadratic kernel matches the simulated kernel, but the calculated linear
kernel is mostly noise (figures 2(E), (F)).

The method also accurately calculates the QIN using equation (30). The results from
simulations with α = 0, 0.05, 0.1, . . . , 1 are summarized in figure 3. For the 10 min
simulations (figure 3(A)), we also show results with different quadratic kernel phases φ2 =
0, π/2, π . Since the linear kernel phase is φ1 = 0, the results demonstrate the method works
well, regardless of the relationship between the linear and quadratic kernels. Note that the QIN
are relatively accurate after 10 min of simulated time even though the kernel estimates have
not yet converged to the quantitatively correct results (cf figures 2(A), (B)).

4.2. Testing the Gaussian approximation

One might expect that the Gaussian approximation underlying the method would limit the
applicability of the results. In the above example, the stimulus was fast compared to the
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Figure 2. Snapshots of simulated (broken curve) and calculated (full curve) kernels from random
dot stimulus. The shaded region indicates those points that represented blanks. (A)–(D) Linear
and quadratic kernels with α = 0.5 estimated from 10 min (A), (B) and 1 h (C), (D) of simulated
time. (E), (F) Linear and quadratic kernels with α = 0.9 estimated from 10 min of simulated time.

temporal width of the kernel so that the sum defining YR (equation (8)) contained many terms.
In this case, the Gaussian approximation was justified.

To test the limitations of the method, we reduced the spatial and temporal scale of the
kernels by setting τ = 2 ms, σ = 2, and f = 0.2. In this case, the input to the nonlinearity YR

contained few terms and most coefficients of these terms were nearly zero, invalidating any
invocation of the central limit theorem. The results of these simulations are shown in figure 4.
When α = 0.5, the kurtosis, which measures the peakedness of a distribution, of YR was 6.5.
(The kurtosis of a normal distribution is 0.) The distribution of YR , shown in figure 4(C), was
clearly non-Gaussian, with a higher peak and longer tails. This breakdown of the Gaussian
approximation increased the mean firing rate by nearly 30% to 14 spikes s−1.

Nonetheless, the method reconstructed the qualitative features of the kernels after 10
simulated minutes (figures 4(A), (B)). The discrepancy between the simulated and calculated
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Figure 3. Comparison of simulated and computed QIN α from random dot stimulus. The line
of equal α is indicated in grey. (A) Results from 10 min of simulated time. Circles indicate a
quadratic kernel phase of φ2 = π/2, triangles indicate φ2 = π and squares indicate φ2 = 0. (B)
Results from 1 h of simulated time and φ2 = π/2. For both (A) and (B), filled symbols indicate
simulations shown in figure 2.
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Figure 4. Results from simulations with narrow kernels. (A), (B) Panels are identical to
figure 2(A), (B) except for the narrower kernels. Shown are kernels calculated from 10 min of
simulated time with α = 0.5. (C) The distribution of values of YR from the same simulation
(grey bars). For comparison, a normal distribution of identical mean and variance is plotted with
a black curve. Note that we subtracted off µR , the mean of YR , to be consistent with the modified
nonlinearity g̃(y). (D) Comparison of simulated and computed QIN α for simulations with narrow
kernels. Results from 10 min (circles) and 1 h (triangles) of stimulated time are shown. The filled
circle indicates the simulation of the previous panels.

kernels decreased but did not completely disappear after 1 simulated hour (not shown). The
method also accurately estimated the QIN α over its entire range (figure 4(D)). Clearly, the
Gaussian approximation required in the derivation is not necessary for accurate results.
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4.3. Stimulus generalizations

To demonstrate the generalizations of section 3.6, we simulated the neuron’s response to
sequences of random sinusoidal gratings with a period of 10 ms. Since the temporal
discretization was 1 ms, we used the generalization of the method to slower stimuli. The
orthonormal elements êk underlying the stimulus ensemble were one-dimensional Hartley
functions normalized to unit length. If N is the number of space points, the Hartley functions
are given by

êk, j = cos(2πk j/N) + sin(2πk j/N)√
N

, for j = 0, . . . , (N − 1). (33)

Using the kernels (equation (31)) with standard parameters, the neuron responds only to low
spatial frequencies. In a one-dimensional analogue of the stimulus described in [20], we used
only the 25 Hartley functions with |k| � 12. We also included four blank stimuli, which
we viewed as members of the orthonormal set, denoting them by ê13, . . . , ê16. Our stimulus
ensemble was composed of these m = 29 orthonormal vectors and their opposites.

The results from these simulations are shown in figure 5. All the analysis is done in the
space defined by the êk . Figures 5(A), (B) shows the resulting linear and quadratic kernels
after 10 min of simulated time and α = 0.5. Ignoring blanks, the linear kernel is transformed
into spatial coordinates and shown in figure 5(C). Note that the estimate of the linear kernel is
much less noisy than the estimate in figure 2(A). This improvement is due both to the smaller
stimulus ensemble and the slower stimulus6.

4.4. Other nonlinearities

We tested the robustness of the method to deviations in the shape of the nonlinearity. We
simulated the response of a neuron with a power law nonlinearity

g̃(y) =
{

Ayb if y > 0

0 otherwise

and with a error function nonlinearity

g̃(y) = 1

2

[
1 + erf

(
y − T

ε
√

2

)]

where erf(x) = 2√
π

∫ x
0 e−t2

dt . For the power law we used parameters A = 0.02 and b = 2,

yielding an average firing rate of 10 spikes s−1. For the error function, we used T = 3.2 and
ε = 1, yielding an average firing rate of 13 spikes s−1. We simulated the neurons in response
to random dots with a period of 10 ms.

Since the nonlinearities were not exponentials, we observed slight discrepancies in
the calculated values of the kernels, primarily with the quadratic kernel. The power law
nonlinearity caused the largest deviations. An example with α = 0.5 and 1 h of simulated
time is shown in figures 6(A), (B). Since the noise is low due to the length of the simulation,
the undershoot at the peaks of the quadratic kernel is clear. In all cases, the method accurately
reproduced the qualitative features of the kernels.

The method also accurately estimated the QIN α as shown in figures 6(C) (power law)
and (D) (error function). After 10 min of simulated time, low αs are slightly overestimated
6 The difference in scale between figures 2(A) and 5(C) is due to the normalization condition equation (64). For
figure 2(A), m/q = 110/1 = 110; for figure 5(C), m/q = 29/10 = 2.9. Since ‖h1‖ = √

m/q, the values of h1 for
figure 5(C) will be

√
2.9/110 ≈ 0.16 times the values for figure 2(A). The result is an artefact of our insistence that

the argument to the nonlinearity have variance one.



690 D Q Nykamp

–10 0 10
–0.2

–0.1

0

0.1

0.2
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Figure 5. Results from simulations with a stimulus ensemble composed of Hartley functions.
(A), (B) Panels are identical to figures 2(A), (B) except that the kernels are plotted in the space
defined by the Hartley functions. Shown are kernels calculated from 10 min of simulated time with
α = 0.5. (C) The linear kernel of panel (A) transformed into spatial coordinates. The responses
to blank stimuli were ignored in the transformation. (D) Comparison of simulated and computed
QIN α for all simulations with Hartley function stimuli. Results from 10 min (circles) and 1 h
(triangles) of stimulated time are shown. The filled circle indicates the simulation of the previous
panels.

and high αs are slightly underestimated, but this deviation disappears after 1 h of simulated
time.

5. Discussion

We have demonstrated a method to separate the linear (odd-order) and quadratic (even-order)
contributions to neuronal response as well as measure their relative contribution to the response.
The method is robust to deviations from the assumptions required for its derivation. In
particular, the assumptions of an exponential nonlinearity and Gaussian input to the nonlinearity
can be relaxed with only minor degradation of the results.

5.1. Local squaring of the model

The linear–quadratic–nonlinear model (equation (2)) was designed to capture the manner in
which complex cells in the primary visual cortex can respond independently of contrast sign.
The local (pixel-by-pixel) squaring of stimulus values is a phenomenologicalmodel of this sign
independence. We chose this simple representation because it can be completely reconstructed
from realistic experiments. The results of the analysis have a model-independent interpretation
(see section 3.5) that do not depend on a neural basis for squaring. Nonetheless, Archie and
Mel [2] demonstrate how active dendrites could act like squaring subunits. Such squaring is
more general than the squaring of individual stimulus components in equation (2).
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Figure 6. Results with power law and error function nonlinearities. (A), (B) Panels are identical
to figures 2(A), (B). Shown are kernels calculated from 1 h of simulated time with α = 0.5 and
power law nonlinearity. (C), (D) Comparison of simulated and computed QIN α for power law (C)
and error function (D) simulations. Results from 10 min (circles) and 1 h (triangles) of stimulated
time are shown. The filled triangle in panel (C) indicates the simulation of the previous panels.

In fact, given that the stimulus (when viewed as random dots) includes only the values
1 and −1 (when nonzero), the distinction between linear and quadratic is equivalent to the
distinction between odd-order and even-order functions of the input. The squaring enters the
analysis only to remove the negative sign from −1. This fact makes the QIN truly a measure
of the contrast sign independence. For this reason, one might view the QIN as a misnomer. We
use the quadratic terminology and formulation of model (2) to allow application in principle
to other stimuli.

5.2. Comparison to other correlation methods

In the case when α = 0, equation (2) is the classical linear–nonlinear model. Correlation
methods are commonly used to recover the linear kernel h1 in this model [1, 3, 5–
7, 9, 12, 17, 20, 24]. When the stimulus is a sequence of random orthogonal vectors, Ringach
et al [20] showed that h1 is proportional to the stimulus–spike correlation when the nonlinearity
is a simple linear threshold. With the exponential nonlinearity assumed in our analysis, this
relationship is no longer exactly correct. Since our results are applicable even for α = 0, they
demonstrate that h1 is instead proportional to v1 (equation (27)). In simulations, we observed
only minor differences between the two estimates of h1 when α = 0. The advantage of the
proposed method is that it eliminates any sign-independent effects from h1 in case they exist.

When α = 1, the neuron responds to the stimulus in a completely sign-independent
fashion. Consequently, E{Xi

j R} = 0 and equation (28) for v2 becomes
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vi
2, j = log

(
E{(Xi

j)
2 R}

E{K i}
)

.

When the stimulus ensemble is composed of two-dimensional Hartley functions, then this
formula is nearly identical to that used by Ringach et al [18] to study the response of visual
cortex neurons to random gratings. Ringach et al simply average over additional phases of the
gratings. Ringach et al also provide a justification for the logarithm based on the detection
of deviations from the baseline, which can be viewed as a justification for the exponential
nonlinearity.

5.3. Comparison to other measures of linearity

The QIN α is an estimate of the linearity of visual cortex neurons, ranging from the idealized
simple cell to the idealized complex cell. In this sense, it is similar to the F1/F0 ratio, a
measure of the linearity of spatio-temporal summation, which was proposed by a number of
investigators as an appropriate measure of cell complexity [4, 11, 14, 22]. F1/F0 represents
the ratio between the amplitude of the first harmonic response and the mean spike rate when
cortical neurons are stimulated with drifting sinusoidal gratings.

The relationship between the QIN and the F1/F0 ratio are studied extensively in [15],
both through simulations and through analysis of the response of neurons in the primary visual
cortex. Those results indicate that the QIN is a better indicator of nonlinearity in receptive field
organization because the F1/F0 ratio is sensitive to the nonlinearity of the spike threshold [13].
The effect of the threshold nonlinearity confounds the effect of receptive field nonlinearity in
the F1/F0 ratio, leading to difficulties in interpreting F1/F0. The QIN, on the other hand, is
insensitive to changes in the nonlinearity g(·) (cf figure 6) and thus the spiking threshold.

The simulations of [15] indicate that the QIN is a robust measure of overlap between
subfields of a traditional complex cell model, similar to the degree of overlap between ON
and OFF subfields proposed by Hubel and Wiesel [8] as a method to classify simple and
complex cells. In this way, the QIN is similar to the overlap index proposed by Schiller
et al [21] and recently used by Kagan et al [10]. The advantages of the QIN include not
only its demonstrated robustness to the spike threshold, but also its applicability to a broad
class of spatio-temporally rich stimuli, its sensitivity to subthreshold effects and its foundation
on a explicit mathematical model. For these reasons, the QIN is a robust tool that one can
confidently use to analyse receptive field properties of neurons in the primary visual cortex
and other primary sensory areas.
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Appendix A. Mathematical details

A.1. Mean and variance calculations

In this section, we calculate the mean and variance of the random variables that will be
approximated as Gaussian. First we calculate the statistics of the components of YR:

YR = √
1 − αh1 · X +

√
αh2 · X2

= √
1 − αYR1 +

√
αYR2.
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Recall that a particular realization of the input is determined by the choice of dot positions
J and dot signs B. It can be written as

X =
n∑

i=1

Biei
J i , (34)

where ei
j indicates a dot at position j and time i (see equation (6)). With this notation, the

component YR1 is

YR1 = h1 · X =
n∑

k=1

Bkhk
1,J k , (35)

and its square is

(YR1)
2 =

n∑
k=1

n∑
l=1

Bk Blhk
1,J k hl

1,J l . (36)

The average value of YR1 is the sum over all (2m)2 possible realizations of the recent
stimulus X divided by (2m)2:

E{YR1} = 1

(2m)n

∑
J∈J n

m

∑
B∈Bn

( n∑
k=1

Bkhk
1,J k

)
, (37)

where J n
m and Bn indicate the sets of all possible sequences of dot positions and signs. Since

each term Bkhk
1,J k can be paired with its opposite −Bkhk

1,J k , all terms in the expression for
E{YR1} cancel out. The mean value of YR1 is

µR1 = E{YR1} = 0. (38)

In calculating E{(YR1)
2}, terms with Bk Bl , k �= l can be paired with the corresponding

term with −Bk Bl and be cancelled out. Only the terms with k = l survive since (Bk)2 = 1
for either sign of Bk:

E{(YR1)
2} = 1

(2m)n

∑
J∈J n

m

∑
B∈Bn

n∑
k=1

n∑
l=1

Bk Blhk
1,J k hl

1,J l

= 1

(2m)n

∑
J∈J n

m

∑
B∈Bn

n∑
k=1

(hk
1,J k )

2.

= 1

mn

∑
J∈J n

m

n∑
k=1

(hk
1,J k )

2. (39)

For any given j and k with 1 � j � m and 1 � k � n, exactly mn−1 vectors in J n
m have J k = j

(since only one component of the vector J is specified, the remaining n −1 components can be
chosen freely). Each term (hk

1, j )
2 appears exactly mn−1 times in the final sum of equation (39)

and E{(YR1)
2} simplifies to

E{(YR1)
2} = 1

m

m∑
j=1

n∑
k=1

(hk
1, j )

2

= ‖h1‖2

m
, (40)

where ‖ · ‖ is the standard vector norm. The variance of YR1 is then

σ 2
R1 = E{(YR1)

2} − (E{YR1})2 = ‖h1‖2

m
,

which is equation (19).
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We repeat the same procedure for YR2. In this case, since everything is positive due to
squaring, we do not have the cancellations we did with YR1. For a particular value of the input
as in equation (34), the local squaring in X2 simply removes all Bi (since (Bi)2 = 1):

X2 =
n∑

i=1

ei
J i . (41)

This means that

YR2 = h2 · X2 =
n∑

k=1

hk
2,J k (42)

and

(YR2)
2 =

n∑
k=1

n∑
l=1

hk
2,J k hl

2,J l . (43)

The average value of YR2 is the sum over all (2m)2 possible values of X divided by (2m)2.
In this case, since the terms do not depend on the Bk, we can immediately sum over all 2n

possible B ∈ Bn :

E{YR2} = 1

(2m)n

∑
J∈J n

m

∑
B∈Bn

( n∑
k=1

hk
2,J k

)

= 1

mn

∑
J∈J n

m

n∑
k=1

hk
2,J k . (44)

By a similar argument as above, each hk
2, j appears in the sum mn−1 times. E{YR2}, which we

denote by µR2, simplifies to

µR2 = E{YR2} = 1

m

m∑
j=1

n∑
k=1

hk
2, j

=
n∑

k=1

h̄k
2, (45)

(equation (11)) where h̄k
2 is the average value of h2 at time point k:

h̄k
2 = 1

m

m∑
j=1

hk
2, j . (46)

The average of (YR2)
2 (equation (43)) also does not depend on the Bk :

E{(YR2)
2} = 1

mn

∑
J∈J n

m

n∑
k=1

n∑
l=1

hk
2,J k hl

2,J l

= 1

mn

∑
J∈J n

m

n∑
k=1

(hk
2,J k )

2 +
1

mn

∑
J∈J n

m

n∑
k=1

n∑
l=1
l �=k

hk
2,J k hl

2,J l

= 1

m

n∑
k=1

m∑
j=1

(hk
2, j )

2 +
1

m2

n∑
k,l=1

l �=k

m∑
i, j=1

hk
2, j h

l
2,i . (47)

We separated out terms where k = l. These terms appear mn−1 times in the large sum. For
k �= l, requiring J k = j and J l = i leaves n − 2 components of J to be chosen freely. Thus,
the terms hk

2, j h
l
2,i appear mn−2 times in the large sum.
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We rewrite E{(YR2)
2} in terms of h̄k

2:

E{(YR2)
2} = 1

m

n∑
k=1

m∑
j=1

(hk
2, j )

2 +
n∑

k,l=1
l �=k

(
1

m

m∑
j=1

hk
2, j

)(
1

m

m∑
i=1

hl
2,i

)

= 1

m

n∑
k=1

m∑
j=1

(hk
2, j )

2 +
n∑

k,l=1
l �=k

h̄k
2h̄l

2. (48)

Combining this with equation (45), the variance of YR2 is

σ 2
R2 = E{(YR2)

2} − µ2
R2

= 1

m

n∑
k=1

m∑
j=1

(hk
2, j )

2 +
n∑

k,l=1
l �=k

h̄k
2h̄l

2 −
n∑

k,l=1

h̄k
2h̄l

2

=
n∑

k=1

[
1

m

m∑
j=1

(hk
2, j )

2 − (h̄k
2)

2

]
. (49)

The term for each time point k is the variance of the values of h2 for that time. We define a
function σt (v) acting on vectors v the same size as h2 by

σt (v) =
{ n∑

k=1

[
1

m

m∑
j=1

(vk
j )

2 −
(

1

m

m∑
j=1

vk
j

)2]}1/2

. (50)

Then σ 2
t (v) is the sum of the variance of each time slice of v. In terms of this function, the

variance of YR2 is simply

σ 2
R2 = σ 2

t (h2)

which is equation (20).
Since YR1 and YR2 are clearly not independent, one would not expect to be able to add

the variances to obtain the variance of YR = √
1 − αYR1 +

√
αYR2. However, the covariance

between YR1 and YR2 is zero:

E{YR1YR2} − E{YR1}E{YR2} = 0 − 0 = 0.

E{YR1YR2} = 0 because each term in YR1YR2 is linear in the binary variables Bk . Each
term is cancelled by an equivalent term of opposite sign, just as in the calculation of E{YR1}.
Consequently, the variance of YR is simply given by the sum of the two component variances

σ 2
R = (1 − α)σ 2

R1 + ασ 2
R2 = 1.

For the calculation of the stimulus–spike correlation, we define the two components of
YX i R just like we did for YR:

YX i R = √
1 − αYX i R1 +

√
αYX i R2 (51)

where

YX i R1 =
n∑

k=1
k �=i

m∑
j=1

hi
1, j X i

j (52)

and

YX i R2 =
n∑

k=1
k �=i

m∑
j=1

hi
2, j (Xi

j)
2. (53)
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The mean and variance for these quantities can be calculated exactly as for YR . The only
difference is that time point i is omitted so that the averages are over (2m)n−1 stimulus
possibilities. The expressions for the mean µX i R and variance σ 2

X i R of YX i R differ from the
expressions for YR only by the omission of time point i :

µX i R = √
1 − αµX i R1 +

√
αµX i R2

µX i R1 = 0

µX i R2 =
n∑

k=1
k �=i

h̄k
2

σ 2
X i R = (1 − α)σ 2

X i R1 + ασ 2
X i R2

σ 2
X i R1 = 1

m

m∑
j=1

n∑
k=1
k �=i

(hk
1, j )

2

σ 2
X i R2 =

n∑
k=1
k �=i

[
1

m

m∑
j=1

(hk
2, j )

2 − (h̄k
2)

2

]
.

A.2. General orthonormal stimuli

To generalize the analysis to random sequences of general orthonormal stimuli in the set {ê j},
we simply perform the analysis in the coordinates determined by the stimulus elements. Given
the orthonormal condition (equation (3)), we can let the vectors {ê j } be the coordinate axes and
simply identify ê j with the m-dimensional vector that is zero except for the j th component.

This identification is an invertible transform analogous to the discrete Fourier transform.
If v is a vector in the span of {ê j }, then its transform v̂ is defined by

v̂ j = 〈v, ê j 〉 =
∑

k

vk ê j,k (54)

where ê j,k are the components of ê j . The inverse transform is

vk =
m∑

j=1

v̂ j ê j,k . (55)

Through this transform,the sequence of images is mathematically identical to the sequence
of dots used in the above analysis. Each presentation of a black or white dot on a grey
background now must be interpreted as the coefficients of each of the orthonormal vectors.

No further modifications would be necessary if one were comfortable assuming that the
model given by equation (2) was acceptable when each stimulus component Xi

j is the coefficient
of the j th orthonormal vector at time i . However, a model that was defined in physical space
makes more sense from a neuroscience perspective. Fortunately, for our stimulus, a model
given by equation (2) in physical space corresponds to a model of the same form in the space
of orthonormal vector coefficients.

That the linear term h1 · X corresponds to an equivalent term ĥ1 · X̂ in coefficient space
is a well known mathematical fact. For this discussion, we look just at a single time point i
and let the i superscript on a vector denote this time slice. Then, ĥi

1 is simply the transform of
hi

1 just as the X̂ i is the transform of X i :

hi
1 · X i =

∑
k

hi
1,k X i

k =
∑

k

hi
1,k

∑
j

X̂ i
j ê j,k
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=
∑

j

X̂ i
j

∑
k

hi
1,k ê j,k =

∑
j

ĥi
1, j X̂ i

j

= ĥi
1 · X̂ i . (56)

Repeating this procedure for each time slice, we determine that h1 · X = ĥ1 · X̂ , where
the notation v̂ indicates taking the transform (54) for each time slice. One can compute ĥ1

by treating the stimulus as X̂ , reducing the problem to the case of dots. Then the kernel h1

is simply the inverse transform of ĥ1. Since ‖h1‖ = ‖ĥ1‖, applying the normalization of
equation (22) to ĥ1 is equivalent to applying it to h1; computing h1 in the transform domain
does not affect the calculation of the other parameters.

The motivation for presenting these classical results is to compare them with the quadratic
term. Due to the nonlinear squaring, one does not simply obtain the transformed version of
h2. Fortunately, due to the structure of the stimulus, we do obtain a similar term h̃2 · X̂2 that
corresponds to h2 · X2, where the notation h̃2 is defined below.

Since only one image is presented at each time slice, the coefficient of only one component
X̂ i

j can be nonzero for a given i . The product X̂ i
j X̂

i
p must be zero for p �= j . This fact simplifies

the dot product of the time slices when expressed in terms of the transforms:

hi
2 · (X i )2 =

∑
k

hi
2,k(Xi

k)
2 =

∑
k

hi
2,k

(∑
j

X̂ i
j ê j,k

)2

=
∑

j

(X̂ i
j )

2
∑

k

hi
2,k(ê j,k)

2 +
∑

j

∑
p �= j

X̂ i
j X̂ i

p

∑
k

hi
2,k ê j,k êp,k

=
∑

j

h̃i
2, j (X̂ i

j)
2 = h̃i

2 · (X̂ i )2. (57)

We have defined another transform in terms of squared values of the orthonormal vectors as

ṽ j = 〈v, ê2
j 〉 =

∑
k

vk(ê j,k)
2. (58)

Repeating this procedure for each time slice, we determine that h2 · X2 = h̃2 · X̂2, where the
notation ṽ indicates taking the transform (58) for each time slice.

Unfortunately, the vectors {ê2
j } will, in general, be linearly dependent. The transform (58)

will not be invertible; it is impossible to recover h2 from h̃2. One could compute the projection
of each time slice hi

2 onto the subspace spanned by the {ê2
j} (that projection is the only part

of hi
2 that affects h2 · X2), but its interpretation would be unclear without first understanding

the subspace.
Although the nature of the stimulus prevents a reconstruction of h2, the fact that

hi
2 · (X i )2 = h̃i

2 · (X̂ i )2 allows the analysis to be performed in the transformed space of
coefficients even when starting with model (2) in physical space. If we use the normalization

σ 2
t (h̃2) = 1 (59)

rather than equation (22), then h2 · X will have variance one, and the calculation of the other
parameters will be the same as in the case of random dots.

A.3. Slower stimuli

We generalize the analysis to the case when the stimulus X changes only every q time points.
This slowing by a factor of q increases the effective power or variance of the stimulus by a
factor of q if the stimulus values are held constant (this is the same phenomenon as when
changing the temporal discretization of white noise approximations).
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Since we normalize the kernels so that h1 · X and h2 · X2 have unit variance, we must
scale the kernels by a factor of 1/

√
q (compare equations (64) and (67) with (22) and (29)).

We also scale the parameter β by 1/
√

q.
This scaling is the only change from the original case. In the rest of this appendix, we

hammer out the details to demonstrate that these claims are indeed true.
The slow stimulus rate will effectively smooth measured stimulus–spike correlations and

prevent resolving temporal structures finer than the stimulus rate. Even though we will compute
h1 and h2 at every time point, we assume that they change insignificantly over one stimulus
frame so that we can shift the temporal index of the order of q units of time as needed to
simplify the calculations.

We first shift temporal indices so that the given time is at the end of a stimulus presentation.
Then, we increase n to the nearest multiple of q and denote by ñ = n/q the number of previous
stimulus frames that affect a neuron’s response. Our set of possible stimuli (4) is replaced by
the (2m)ñ possibilities

X ∈
{ ñ−1∑

i=0

q∑
p=1

Bie
qi+p
J i : J ∈ J ñ

m & B ∈ Bñ

}
. (60)

The calculation of E{R} proceeds as in section 3.3.1. The only departure from that
derivation is the calculation of E{(YR1)

2} and E{(YR2)
2}. The variance of YR1 is

σ 2
R1 = E{(YR1)

2} = 1

(2m)ñ

∑
J∈J ñ

m

∑
B∈Bñ

ñ−1∑
k,l=0

q∑
p,r=1

Bk Blhqk+p
1,J k hql+r

1,J l

= 1

mñ

∑
J∈J ñ

m

ñ−1∑
k=0

q∑
p,r=1

hqk+p
1,J k hqk+r

1,J k

= q

mñ

∑
J∈J ñ

m

ñ−1∑
k=0

q∑
p=1

(
hqk+p

1,J k

)2

= q

m
‖hk

1, j‖2 (61)

where the only new feature is approximating hqk+r
1,J k by hqk+p

1,J k by shifting the temporal index of
the order of q units of time.

The expected value of Y 2
R2 is

E{(YR2)
2} = 1

mñ

∑
J∈J ñ

m

ñ−1∑
k,l=0

q∑
p,r=1

hqk+p
2,J k hql+r

2,J l

= 1

mñ

∑
J∈J ñ

m

ñ−1∑
k=0

q∑
p,r=1

hqk+p
2,J k hqk+r

2,J k +
1

mñ

∑
J∈J ñ

m

ñ−1∑
k,l=0
l �=k

q∑
p,r=1

hqk+p
2,J k hql+r

2,J l

= q

m

n∑
k=1

m∑
j=1

(hk
2, j )

2 +
n∑

k=1

( n∑
l=1

h̄k
2h̄l

2 − q(h̄k
2)

2

)
. (62)

We approximated hqk+r
2,J k by hqk+p

2,J k in the first sum before making the counting argument to arrive
at the last step. For the second sum, we shifted the temporal indices of the missing terms to k
after making the counting argument. The variance of YR2 is then

σ 2
R2 = q

n∑
k=1

[
1

m

m∑
j=1

(hk
2, j )

2 − (h̄k
2)

2

]
= qσ 2

t (h2). (63)
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Equations (61) and (63) show that the effective power of the stimulus is proportional to the
frame interval q . The firing rate will increase as the stimulus is slowed even for a model with
no preferred temporal frequency built in. We mask this dependence on the stimulus frequency
by requiring the nonlinearity argument to have variance one. The kernels are simply divided
by

√
q as compared to the original derivations, the normalization conditions becoming

‖h1‖ = √
m/q and σt (h2) = 1/

√
q. (64)

In the calculation of the stimulus–spike correlations, the hi
1, j and hi

2, j terms are multiplied
by q . For example, in the correlation of the spikes with the positive stimuli, we know that if
Xi

j = 1, then Xk
j = 1 for q temporal indices k around i . We pull out each of these terms from

YX i R and approximate their temporal index as i , yielding q
√

1 − αhi
1, j +q

√
αhi

2, j +YX i R as the
nonlinearity argument. (The mean µX i R and variance σ 2

X i R of YX i R change since more terms
are removed, but they drop out of the final calculations.) We arrive at the modified expression
for the stimulus–spike correlations

E{Xi
j (Xi

j ± 1)R} = 1

mσX i R

√
2π

×
∫

g(y) exp

(
− (y ∓ q

√
1 − αhi

1, j − q
√

αhi
2, j − µX i R)2

2σ 2
X i R

)
dy. (65)

The analysis for an exponential nonlinearity in section 3.4.3 is identical except that
equation (26) becomes

qβ
[
±√

1 − αhi
1, j +

√
αhi

2, j

]
= log

(
E{Xi

j (Xi
j ± 1)R}

E{K i}
)

. (66)

Given the new normalization condition (equation (64)), the expressions for the linear and
quadratic kernels become

h1 =
√

mv1√
q‖v1‖ and h2 = v2√

qσt (v2)
, (67)

so that

‖v1‖2 = mqβ2(1 − α) and σ 2
t (v2) = qβ2α.

The q falls out of the expression for the QIN so that equation (30) is still valid. The expression
for β is multiplied by 1/

√
q and the expression for γ is unchanged.

Appendix B. Correcting finite sample effects

B.1. Bias reduction

Naive estimates of quantities, like ‖v1‖2 and σt (v2)
2, will be biased away from their true values

due to noise. As discussed in [16], this bias increases with the size of the vectors. To obtain
accurate results, steps must be taken to reduce the bias.

We derive a procedure for reducing the bias by viewing the estimates of the stimulus–spike
statistics as random variables. The expected value of these random variables are the expected
values assumed in our calculations. However, since the model parameters are nonlinear
functions of those expected values, the variances and covariances of the random variables
create bias in the nonlinear function of the random variables. In other words, the expected
value of a nonlinear function of random variables is not equal to the nonlinear function of the
expected value of the random variables.
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Consider the estimation of F(E{A}, E{B}), where A and B are two random variables and
F(x, y) is some scalar nonlinear function. From a finite data set, one can estimate the random
variables A and B (e.g. as sample means over the data set). However, even though A and B
are unbiased estimates of E{A} and E{B}, the estimate F(A, B) will, in general, be a biased
estimate of F(E{A}, E{B}):

E{F(A, B)} �= F(E{A}, E{B}).
A major component of the bias is due to the covariance of the estimates A and B, cov(A, B).

Computing the Taylor series, we obtain

F(A, B) ≈ F(E{A}, E{B}) + (A − E{A})∂ F

∂x
(E{A}, E{B})

+ (B − E{B})∂ F

∂y
(E{A}, E{B}) + (A − E{A})2 ∂2 F

∂x2
(E{A}, E{B})

+ (A − E{A})(B − E{B}) ∂2 F

∂x ∂y
(E{A}, E{B})

+ (B − E{B})2 ∂2 F

∂y2
(E{A}, E{B}).

Taking the expected values,

E{F(A, B)} ≈ F(E{A}, E{B}) + σ 2
A

∂2 F

∂x2
(E{A}, E{B})

+ cov(A, B)
∂2 F

∂x ∂y
(E{A}, E{B}) + σ 2

B

∂2 F

∂y2
(E{A}, E{B})

where σ 2
A is the variance of A and σ 2

B is the variance of B .
To close the formula, we simply take the expected values out of the nonlinear function in

the coefficients of the variance/covariance terms:

E{F(A, B)} ≈ F(E{A}, E{B}) + σ 2
A E

{
∂2 F

∂x2
(A, B)

}

+ cov(A, B)E

{
∂2 F

∂x ∂y
(A, B)

}
+ σ 2

B E

{
∂2 F

∂y2
(A, B)

}
.

Of course, this last step introduces bias of the same type we are attempting to eliminate.
However, this error is approximately the same magnitude as the error we made in truncating
the Taylor series. Assuming the Taylor series was expanded around small parameters, the
quantity

F(A, B) − σ 2
A

∂2 F

∂x2
(A, B) − cov(A, B)

∂2 F

∂x ∂y
(A, B) − σ 2

B

∂2 F

∂y2
(A, B) (68)

estimates F(E{A}, E{B}) with less bias than F(A, B) alone.
For example, let A be an estimate of E{Xi

j(Xi
j + 1)R} and B be an estimate of

E{Xi
j (Xi

j − 1)R} calculated from a data set. Then

vk
1, j = 1

2 log E{A} − 1
2 log E{B}

and

(vk
1, j )

2 = 1
4 (log E{A})2 − 1

2 log E{A} log E{B} + 1
4 (log E{B})2.

Each term is of the form F(E{A}, E{B}) and so should be estimated using expressions of the
form (68). (To simplify the calculations, we ignored the second derivatives of the logarithm
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because its contribution turned out to be inconsequential.) After simplification, the resulting
estimator of (vk

1, j )
2 is[

1

2
log

(
C + D

C − D

)]2

− Dσ 2
C − 2C D cov(C, D) + Cσ 2

D

(C2 − D2)2
,

where C = (A + B)/2 and D = (A − B)/2 are estimates of E{(Xi
j )

2 R} and E{Xi
j R},

respectively. In practice, we estimate the variances σ 2
C , σ 2

D and covariance cov(C, D) by
dividing the data set into trials and calculating estimates for each trial.

One can calculate estimators of each component of σ 2
t (v2) using the same principle.

B.2. Correcting zero correlation estimates

When the nonlinearity g(·) is an exponential function, the expected value E{Xi
j(Xi

j ± 1)R}
can never be exactly zero (although it can be arbitrarily close to zero). Even if model (2) with
an exponential g(·) exactly represented the neural response, one may obtain zero estimates of
E{Xi

j (Xi
j ± 1)R} from a finite data set. The estimate will be zero if no spikes happen to occur

in the data set i units of time after presentation of a white or black dot at position j . In this
case, our procedure to calculate the model parameters would require taking the logarithm of
zero in equations (27) and (28).

One possible solution is to average over neighbouring time points. In some cases, however,
we discovered we had to average over an unacceptably large number of points to obtain a
nonzero value. To avoid such broad averaging, we developed the following procedure.

Let A be an estimate of E{Xi
j(Xi

j + 1)R} and B be an estimate of E{Xi
j (Xi

j − 1)R}
calculated from a data set. Given our exponential form for g(·),we are assuming that E{A} > 0
and E{B} > 0. If we sample A = 0 or B = 0, then this sample must be below the true expected
value. We arbitrarily set a constant ε and assume the sample A or B must be below the true
mean by ε times their sample standard deviation σA or σB . Hence, we approximate the expected
values by E{A} ≈ εσA or E{B} ≈ εσB . We use the value ε = 1 (but see below).

If A = 0 or B = 0, then a straightforward estimate of its standard deviation would also
be zero. (A and B are averages of nonnegative values. If the average is zero, all the terms
composing the average are zero.) We compensate as follows. If both A and B are zero, then
we approximate σA and σB as the average standard deviation observed from blank locations. If
only A is zero, then we approximate σA as σB/4 (and approximate σB ≈ σA/4 when B = 0).

Clearly, these choices are arbitrary. This approach can be viewed as a method of setting
the exponential function to zero when its argument is small. To verify that this approach is
not introducing significant error, we repeat the calculation of all model parameters when ε

is doubled and when ε is halved. Large deviations in the estimates of the parameters as a
result of these manipulations indicate that those estimates are not reliable. In all simulations,
such deviations were minute and are therefore not represented in the figures. When applying
this approach to experimental data, however, one must carefully examine deviations due to
changing ε in order to throw out invalid results. One could also vary estimates of σA and σB

independently and evaluate the resulting changes in parameters.
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