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Abstract We present an approach for using kinetic the-
ory to capture first and second order statistics of neu-
ronal activity. We coarse grain neuronal networks into
populations of neurons and calculate the population
average firing rate and output cross-correlation in re-
sponse to time varying correlated input. We derive cou-
pling equations for the populations based on first and
second order statistics of the network connectivity. This
coupling scheme is based on the hypothesis that second
order statistics of the network connectivity are suffi-
cient to determine second order statistics of neuronal
activity. We implement a kinetic theory representation
of a simple feed-forward network and demonstrate
that the kinetic theory model captures key aspects of
the emergence and propagation of correlations in the
network, as long as the correlations do not become
too strong. By analyzing the correlated activity of feed-
forward networks with a variety of connectivity pat-
terns, we provide evidence supporting our hypothesis
of the sufficiency of second order connectivity statistics.
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1 Introduction

Understanding how the brain’s neuronal networks per-
form computations remains a difficult challenge. The
interaction of large populations of neurons leads to
a complex repertoire of high-dimensional activity pat-
terns that is difficult to analyze. One possibility to
reduce the dimensionality and complexity of such net-
works is to ignore high order interactions among neu-
rons and simply analyze the consequences of low order
interactions. Stopping at second order interactions may
provide a good description, as recent evidence suggests
that pairwise firing statistics among neurons may be
sufficient to capture most of the higher order firing
patterns (Schneidman et al. 2006; Shlens et al. 2006;
Tang et al. 2008; Yu et al. 2008).

We present a kinetic theory approach that is de-
signed to capture the second order interactions among
neurons. Kinetic theory approaches have been used
to model gases and plasmas, where one uses moment
closure approximations to derive equations for lower
order statistics of a system of particles (Ichimaru 1973;
Nicholson 1992). We implement a similar approach to
track the second order statistics among neurons in a
population while explicitly neglecting third and higher
order statistics.

1.1 Motivation for approach

To understand the behavior of a neuronal network,
one may be interested in uncovering the relationship
between the network structure and the behavior. Mod-
eling neuronal networks is challenging as the set of
possible connectivity combinations is enormous and we
do not have experimental methods to determine the
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fine details of connectivity. Even if we could exactly
determine the connectivity of the network, one would
still be faced with the challenge of determining what
features of the network underlie the behavior of inter-
est. As the exact connectivity of a given network within
the brain may vary widely among individuals while the
behavior of interest is maintained, all the details of the
connectivity may not be important for the behavior.
One would like a method to distill the connectivity
down to its key features and to study how these features
influence the behavior.

Recent experimental results suggest an approach
that may be promising. A number of labs have pro-
vided evidence that the second order statistics of in-
terneuronal firing patterns may be sufficient to describe
a large fraction of the higher order firing patterns
(Schneidman et al. 2006; Shlens et al. 2006; Tang et al.
2008; Yu et al. 2008). In a similar manner, we hypoth-
esize that the second order statistics of connectivity
patterns may be sufficient to explain a large fraction
of the behavior of the brain’s neuronal networks. If
the second order connectivity statistics were sufficient
to explain the second order statistics of firing patterns,
then the above experimental results suggest they should
be sufficient to explain a large fraction of the higher
order firing patterns of the brain’s neuronal networks.

If second order connectivity statistics do capture
much of the relevant network behavior, then one can
greatly simplify the space of connectivity patterns, pa-
rameterizing them by just their second order statistics.
One could attempt to understand network behavior by
exploring the consequences of these second order con-
nectivity statistics. To do so, one would like a method
to analyze network behavior as a function of just the
second order connectivity statistics while imposing as
little as possible additional structure on the higher or-
der connectivity patterns.

One approach is to use kinetic theory to develop
tools to study second order statistics of the activity
and connectivity of neuronal networks. With kinetic
theory, one can explicitly ignore higher order statistics
and simply model second order distributions among
the variables of interest. Then, one can use maximum
entropy methods (Jaynes 1957) to infer higher order
distributions with minimal structure.

1.2 Principles underlying our kinetic theory
implementation

Our kinetic theory implementation begins with a coarse
graining step where we group neurons into populations
(see left two panels of Fig. 1). Within each population,
we will assume the neurons have identical properties
and identical statistics, so this step clearly leads to a
loss of detail. For each population, we will track the
distribution of neurons over state space with a density
function that we call a population density function
(Nykamp and Tranchina 2000). However, unlike pre-
vious approaches, we will not assume that the neurons
within a population are independent. Instead, we ex-
plicitly represent the joint distribution of any pair of
neurons with the population density ρ(x1, x2, t), where
each vector xi represents a value of the state variables
for a single neuron. Roughly speaking, the quantity
ρ(x1, x2, t)dx1dx2 represents the probability that the
state variables Xi(t) and X j(t) at time t of two neurons
in the population are near the values x1 and x2. Since
we assume this holds for any pair of neurons, the pop-
ulation density ρ(x1, x2, t) clearly must be symmetric in
x1 and x2.

Once we form a population density ρ j(x1, x2, t) for
each coarse-grained population j, we need to determine
the second order statistics for the connectivity of the
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Fig. 1 Schematic illustration of the procedure for forming ki-
netic theory approximations of neuronal networks. Starting with
a neuronal network (left), we group neurons into populations,
which we indicate by letters (middle). For each population, we

represent first and second order statistics of neuronal activity with
population density functions (right). The coupling among the
population density functions is based on first and second order
statistics of the original network connectivity
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populations. For our kinetic theory implementation, we
will use the following two statistics (see Fig. 2):

1. W1
jk, the average number of neurons from popula-

tion j that project onto a single neuron in popula-
tion k (a first order statistic), and

2. W2
jk, the average number of neurons from popu-

lation j that simultaneously project onto a pair of
neurons in population k (a second order statistic).

In presenting the results, we will typically use the ratio
β jk = W2

jk/W1
jk for the second order statistic. We refer

to β jk as the fraction of shared input parameter.
To derive coupling equations for the network of

population densities, one must develop a method to
capture the effect of the connectivity statistics on the
interactions among the population density functions.
Then, one can complete the simplification of the orig-
inal network (e.g., left of Fig. 1) into a kinetic theory
network of interacting population densities (e.g., right
of Fig. 1).

The goal is to develop a kinetic theory network ap-
proach where the population density functions capture
the second order statistics in the neuronal activity and
the interaction terms capture the second order statis-
tics of the connectivity. Such a tool could be used to
explore the consequences of connectivity in a setting
where both the connectivity and the neuronal activity
are highly simplified and lower dimensional (Nirenberg
and Victor 2007) due to the neglect of higher order sta-

Fig. 2 Illustration of the second order statistics of connectivity
used in our kinetic theory approach. We consider the connections
from a presynaptic population (left group) onto any pair of
neurons from a postsynaptic population (right). The first order
statistic W1 is the expected number of neurons from the presy-
naptic population that project to a single postsynaptic neuron
(six in this illustration). The second order statistic W2 is the
expected number of presynaptic neurons that project to both
postsynaptic neurons (two in this case). The fraction of shared
inputs parameter is their ratio β = W2/W1 (which is 1/3 in this
case)

tistics. This simplified framework may facilitate explo-
ration of the key features of connectivity that underlie
network behavior.

In this paper, we have more modest goals than al-
luded to above. As an initial test of the potential of this
approach, we develop in Section 2 a kinetic theory ap-
proach for modeling the emergence and propagation of
correlations through excitatory feed-forward networks
of integrate-and-fire neurons. We gauge the perfor-
mance of this approach as well as test our hypothesis
of the sufficiency of second order connectivity statistics
in Section 3. We discuss the successes and failures of
this implementation in Section 4.

2 Derivation of feed-forward kinetic theory model

As an initial test of our kinetic theory approach to
capturing second order statistics, we seek to develop
a second order kinetic theory description of excitatory
feed-forward networks of integrate-and-fire neurons.
Feed-forward networks are an ideal test system for
this approach for a few reasons. First, we study feed-
forward networks that are naturally divided into layers,
and we can group all neurons of a layer into a sin-
gle population with little adverse effect of the coarse-
graining. Second, neurons within each population do
not interact, so one can derive a simplified kinetic
theory description. Third, it is well-known that cor-
relations emerge and propagate through feed-forward
networks (Diesmann et al. 1999), and the feed-forward
networks will be a good test case to see if the ki-
netic theory model correctly captures this build-up of
correlation.

2.1 The integrate-and-fire model

To keep the kinetic theory equations as simple as
possible, we base our implementation on a simplified
integrate-and-fire model of neuronal dynamics. We let
Vj(t) be the voltage of neuron j at time t and let the
voltage evolve according to the stochastic differential
equation

dVj

dt
= Er − Vj

τ
+

∑

i

Ai
jδ

(
t − Ti

j

)
, (1)

where τ is the membrane time constant, Er is the rest-
ing potential, and δ(t) is the Dirac delta function. At the
times Ti

j of excitatory synaptic input, the voltage jumps
up by the amount Ai

j, which is a random variable with
probability density function fA(x). We define spike
times tsp as those times when V(t) crosses the firing
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threshold vth, and we immediately reset the voltage
to V(t+sp) = vreset, where vreset < Er < vth. We use this
model because the state of the neuron is described by
just the single state variable V(t).

We assume the arrival times Ti
j of the input for each

neuron j are given by a modulated Poisson process,
where the rate is identical for each neuron in a given
population. In departure from previous kinetic theory
implementations, we allow the inputs to any pair of
neurons in the population to be correlated, though for
simplicity, we only model instantaneous correlations in
the input. We assume that the inputs to any pair of
neurons are given by independent Poisson processes
to each neuron at rate νind(t) combined with synchro-
nous input to both neurons from a third independent
Poisson process at rate νsyn(t). This correlated input will
create correlations among the neurons in the popula-
tion, which we will represent with a population density
function. A schematic of the random walk exhibited by
a pair of neurons with this input is shown in Fig. 3. The
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Fig. 3 Schematic of random walk of the voltages of a pair of
neurons. The neuron voltages (V1(t), V2(t)) start at the point
indicated by A. Neuron 2 fires alone at B, the neurons fire
synchronously at C, neuron 1 fires alone at D, and the voltages
end at E. Synchronous input jumps are indicated by the thick
diagonal lines and independent input jumps are indicated by
horizontal or vertical solid lines. Voltage decay toward (Er, Er) in
between inputs is indicated by the thin diagonal lines. After one
or more neurons fire by crossing the threshold vth (dotted line),
the voltage is reset to vreset, as indicated by the dashed lines. For
a large population of neurons, the voltages (V j(t), Vk(t)) of each
neuron pair can be viewed as following such a random walk, and
the population density ρ(v1, v2, t) captures the fraction of neuron
pairs in the population with voltages (V j(t), Vk(t)) around (v1, v2)

random walk includes the decay toward Er in between
inputs as well as the voltage reset to vreset after crossing
the threshold vth.

2.2 The kinetic theory equations

To form a population density function, we assume all
neurons in the population are identical and that every
pair has the same second order statistics. We represent
the second order statistics among the state variables
V j(t) by the population density function ρ(v1, v2, t),
defined by
∫

�

ρ(v1, v2, t)dv1dv2 = Pr
(
(V j(t), Vk(t)) ∈ �

)
,

where � is any region in the v1-v2 phase plane and Vj(t)
and Vk(t) are the voltages of any two neurons in the
population. For simplicity, we will refer to the voltages
as V1(t) and V2(t). For a large population of neurons,
one can view

∫
�

ρ(v1, v2, t)dv1dv2 as the fraction of
neuron pairs with voltages in the region �.

Since the input to a pair of neurons is a correlated
Poisson process, the history of the synaptic input does
not influence future evolution of the voltage and the
evolution of the voltage pair (V1(t), V2(t)) is a Markov
process. The evolution of (V1(t), V2(t)) contains the de-
terministic evolution of the voltages toward Er due to
the leakage term from Eq. (1), and it contains the jump
processes due to independent and synchronous inputs,
as well as reset to vreset after spiking. We can write
down the differential Chapman–Kolmogorov equation
(Gardiner 2004) to describe these processes as follows:

∂ρ

∂t
(v1, v2, t) = 1

τ

∂

∂v1
[(v1 − Er)ρ(v1, v2, t)]

+ 1

τ

∂

∂v2
[(v2 − Er)ρ(v1, v2, t)]

+νind(t)
[∫ v1

vreset

fA(v1 − θ1)ρ(θ1, v2, t)dθ1

− ρ(v1, v2, t)
]

+νind(t)
[∫ v2

vreset

fA(v2 − θ2)ρ(v1, θ2, t)dθ2

− ρ(v1, v2, t)
]

+νsyn(t)
[∫ v1

vreset

∫ v2

vreset

fA(v1−θ1) fA(v2−θ2)

×ρ(θ1, θ2,t)dθ2dθ1−ρ(v1, v2, t)
]

+δ(v1 − vreset)Jreset,1(v2, t)

+δ(v2 − vreset)Jreset,2(v1, t)

+δ(v1 − vreset)δ(v2 − vreset)Jreset,3(t). (2)
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The first two lines of Eq. (2) contain the advection
terms due to the leak current of Eq. (1) that draws each
voltage toward the resting potential Er. The third and
fourth lines describe the jumps due to independent in-
put to neuron 1. The integral contains the contribution
to ρ(v1, v2, t) due to a neuron with voltage V1(t) = θ1

receiving an input of size v1 − θ1 so that it lands at
V1(t) = v1. The second term is the loss of probability
at ρ(v1, v2, t) due to neurons with voltage V1(t) = v1

receiving an independent input and jumping to a higher
voltage. The fifth and sixth lines of Eq. (2) are the sym-
metric terms for independent input to neuron 2. The
seventh and eighth lines describe the jumps in both neu-
rons due to synchronous input. The integral contains
the contribution to ρ(v1, v2, t) when a neuron pair with
voltages (V1(t), V2(t)) = (θ1, θ2) receives synchronous
input of size (v1 − θ1, v2 − θ2) that jumps the voltages to
(V1(t), V2(t)) = (v1, v2). The second term is due to loss
of probability at ρ(v1, v2, t) due to a neuron pair with
voltages (V1(t), V2(t)) = (v1, v2) receiving synchronous
input that jumps both voltages higher.

The last three lines of Eq. (2) contain terms due to
the reset of voltage to V(t) = vreset immediately after a
neuron fires a spike. The factors Jreset,k are defined by

Jreset,1(v2, t) = νind(t)
∫ vth

vreset

FA(vth − θ1)ρ(θ1, v2, t)dθ1

+νsyn(t)
∫ v2

vreset

∫ vth

vreset

FA(vth−θ1) fA(v2−θ2)

×ρ(θ1, θ2, t)dθ1dθ2,

Jreset,2(v1, t) = νind(t)
∫ vth

vreset

FA(vth − θ2)ρ(v1, θ2, t)dθ2

+νsyn(t)
∫ vth

vreset

∫ v1

vreset

FA(vth−θ2) fA(v1−θ1)

×ρ(θ1, θ2, t)dθ1dθ2,

Jreset,3(t) = νsyn(t)
∫ vth

vreset

∫ vth

vreset

FA(vth − θ1)

×FA(vth − θ2)ρ(θ1, θ2, t)dθ1dθ2, (3)

where FA(x) is the complementary cumulative dis-
tribution function of the random jump size A, that
is, FA(x) = ∫ ∞

x fA(t)dt = Pr(A > x). The first integral
of Jreset,1(v2, t) reflects the event that a neuron with
V1(t) = θ1 receives an independent input that jumps
the voltage past the threshold vth. The neuron is reset
to V1(t) = vreset while V2(t) stays at v2. The second
integral of Jreset,1(v2, t) reflects the event that a pair of
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V (t)1
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Fig. 4 Illustration of the three reset terms and their relationship
to the average and synchronous firing rates. Jreset,1 corresponds
to the reset to vreset after neuron 1 fires alone due to independent
or synchronous input. Jreset,2 is the equivalent for neuron 2.
Jreset,3 corresponds to the reset of both neurons to vreset after
synchronous input causes the neurons to simultaneously cross
threshold. The synchronous firing rate rsyn is simply Jreset,3. We
can obtain the average firing rate rave by adding all the ways
neuron 1 can fire alone (all the Jreset,1) to the synchronous firing
rate. Plotting convention is the same as in Fig. 3

neurons with (V1(t), V2(t)) = (θ1, θ2) receives a simul-
taneous input that jumps V1(t) past threshold and V2(t)
to the subthreshold voltage v2. Jreset,2(v1, t) is identical
to Jreset,1(v2, t) with the roles of the neurons reversed.
Jreset,3(t) reflects the event that a pair of neurons with
(V1(t), V2(t)) = (θ1, θ2) receives a simultaneous input
that jumps both neurons past threshold. In this case,
both voltages are reset to vreset. The neuron firings
contributing to the Jreset,k are illustrated in Fig. 4.

The addition of the reset terms makes Eq. (2) a
conservative system so that the integral of ρ remains
constant, which we fix to 1. However, the equation is
not written in conservative form. To aid in developing
a conservative numerical method to solve Eq. (2), we
first rewrite the equation in conservative form, and then
base our numerical scheme on the conservative form, as
discussed in Appendix A.

2.3 Total firing rate and synchronous firing rate

Since the reset terms described above reflect the volt-
age reset after firing, they can be used to read out
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the firing rate of population. If we denote Vj(T+) =
limt→T+ Vj(t), we can interpret the reset terms as

Jreset,1(v2, t)dv2dt = Pr(neuron 1 fires at T ∈ (t, t + dt)

and V2(T+) ∈ (v2, v2 + dv2)),

Jreset,2(v1, t)dv1dt = Pr(neuron 2 fires at T ∈ (t, t + dt)

and V1(T+) ∈ (v1, v1 + dv1)),

Jreset,3(t)dt = Pr(both neurons simultaneously

fire at T ∈ (t, t + dt)). (4)

Note that the factors Jreset,1(v2, t)dv2, Jreset,2(v1, t)dv1,
and Jreset,3(t) indicate the probability of a spike per unit
time. If neuron 1 fires a spike, the spike will be reflected
in Jreset,3 if neuron 2 fires simultaneously; otherwise the
spike will be reflected in Jreset,1. Therefore, the average
firing rate for a neuron is simply the sum of Jreset,3(t)
plus all of the Jreset,1(v2, t),

rave(t) =
∫ vth

vreset

Jreset,1(v2, t)dv2 + Jreset,3(t). (5)

(By symmetry, we could have equally well defined
rave(t) by replacing Jreset,1 with Jreset,2, obtaining the
identical firing rate of neuron 2).

We also define the synchronous firing rate, which
is the rate at which both neurons fire simultaneously.
Given Eq. (4), the synchronous firing rate is clearly

rsyn(t) = Jreset,3(t). (6)

Since the reset terms Jreset,k are calculated in the course
of solving for ρ(v1, v2, t), we can easily obtain the firing
rates rave(t) and rsyn(t). The threshold crossings corre-
sponding to the average and synchronous firing rates
are illustrated in Fig. 4.

2.4 Capturing output correlation

The average firing rate rave(t) captures the first order
statistics of the population output, and the synchronous
firing rate rsyn(t) captures one type of second order
statistic of the output, namely correlation with zero
delay. However, rsyn(t) does not capture all of the
correlation between two neurons. If a pair of neurons
receives independent Poisson input at rate νind(t) and
synchronous Poisson input at rate νsyn(t), their spikes
may become correlated at some non-zero delay, which
is not captured by rsyn(t).

Consider the snapshot of ρ(v1, v2, t) in the left
panel of Fig. 5. The synchronous input νsyn(t) has in-
creased the probability of the voltage combinations
(V1(t), V2(t)) close to the diagonal, so that the positive

correlation between V1(t) and V2(t) is clearly seen. For
this reason, the probability for (V1(t), V2(t)) to be in the
upper right corner (point A in middle panel of Fig. 5)
is higher than it would be if the neurons were inde-
pendent. If the neurons received a synchronous input
while their voltages were near the upper right corner,
they would be highly likely to simultaneously spike and
reset (points B→C), contributing to the synchronous
firing rate rsyn(t). However, if the neurons each received
independent input not exactly at the same time, then
the neurons would be highly likely to fire with a short
delay between their firing times (A→D→E→F in mid-
dle panel of Fig. 5). With a voltage distribution such as
in left panel of Fig. 5, this independent input would still
lead to correlations in the firing between the neurons
because they would be more likely to fire within a short
delay of each other than predicted by an independent
distribution.

We cannot directly read out this delayed correlation
from ρ2(v1, v2, t). If the voltage pair (V1(t), V2(t)) is
near the upper right corner and the first neuron re-
ceived an independent input, it would be highly likely
to fire by itself, after which its voltage would be reset
to vreset. The voltage pair (V1(t), V2(t)) jumps to the
upper left corner of ρ2(v1, v2, t) (point E in middle
panel of Fig. 5), and the fact that the first neuron had
just spiked is lost. Even if the second neuron receives
an input shortly thereafter and fires a spike (point F),
there is no way of determining the spike time of the
first neuron from the fact that (V1(t), V2(t)) crosses
the upper boundary of ρ2(v1, v2, t) somewhere near the
upper left corner.

To read out the delayed correlation, we construct
another density, which we call ρcross(v2, τ ; t0), defined
so that ρcross(v2, τ ; t0)/rave(t0) is the probability density
of V2(t0 + τ) conditioned on neuron 1 firing at time t0
(right panel of Fig. 5). To compute the evolution of
ρcross(v2, τ ; t0) with respect to τ for a fixed t0, we initial-
ize it with the distribution of neuron 2 conditioned on
neuron 1 spiking, i.e., ρcross(v2, 0; t0) = Jreset,1(v2, t0) +
δ(v2 − vreset)Jreset,3(t0). (This corresponds to injecting
points C and D in the right panel of Fig. 5.) Then,
we evolve ρcross(v2, τ ; t0) according a modified version
of equation Eq. (2), where we integrated out v1 and
replaced t with t0 + τ . We then define rcross(τ ; t0) as
the reset term from this modified equation (the D→E
threshold crossing and subsequent reset in the right
panel of Fig. 5). In this way, rcross(τ ; t0)/rave(t0) is the
probability per unit time that neuron 2 fires at time
t0+τ conditioned on neuron 1 firing at time t0. We
subtract rave(t0 + τ), the marginal probability per unit
time that neuron 2 fires at time t0 + τ , and multiply
by rave(t0). Finally, we add the zero delay correlation
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Fig. 5 Left: Pseudocolor plot of highly correlated population
density function ρ(v1, v2, t). Light colors correspond to high
probability. Middle: Illustration of delayed correlation that is
likely to result from a correlated population density. Given the
correlated density, the likelihood that the voltages (V1(t), V2(t))
of a pair of neurons is in the upper right corner (A) is higher than
if the voltages were independent. Receiving synchronous input
might lead to synchronous firing and reset of the neuron pair
(A→B→C). However, if the neurons each received independent
input, the neurons would be likely to fire within a short delay
(A→D→E→F). After the first neuron fires, the voltage is reset
to the upper left corner (E), and the fact that the first neuron fired

recently is lost. Right: Illustration of method to track delayed
correlation. After the first neuron fires and the voltage pair
is reset to (vreset, v2) in ρ(v1, v2, t), the firing is simultaneously
recorded by injecting into ρcross(v2, τ ; t) at (v2, 0) (point D on
right diagram). As the voltage of the second neuron evolves
(D→E), the time since the first neuron fired is tracked by τ .
When the second neuron fires (E→F), the pair of spikes with
delay τ (i.e., at times t and t + τ ) is recorded by the crossing
of threshold in ρcross(v2, τ ; t) at the point (vth, τ ). If the neurons
had fired simultaneously, we would record this by injecting into
ρcross(v2, τ ; t) at (vreset, 0) (point C on right diagram). Plotting
convention of the right two panels is the same as in Fig. 3

rsyn(t0) to obtain the cross correlation between the neu-
rons at time t0 with delay τ :

C(τ ; t0) = δ(τ )rsyn(t0) + rcross(τ ; t0)

−rave(t0)rave(t0 + τ). (7)

The cross-correlation has units of spikes per unit
time squared and is the correlation between spikes
of one neuron at time t0 and the spikes of a second
neuron at time t0 + τ . We extend the definition for
negative delays −τ to be the correlation between the
spikes of one neuron at time t0 − τ and the spikes of
another neuron at time t0: C(−τ ; t0) = C(τ ; t0 − τ). To
summarize the correlation at a time t, we compute the
area of the peak of positive correlation around delay 0,

Cpeak(t) =
∫ τ2

−τ1

C(τ ; t)dτ, (8)

where −τ1 and τ2 are the delays where the correlation
first becomes negative: τ1 = min{τ > 0 | C(−τ, t) ≤ 0}
and τ2 = min{τ > 0 | C(τ, t) ≤ 0}.

2.5 Derivation of network equations

The kinetic theory Eq. (2) can be used to compute the
evolution of a population of neurons to prescribed inde-
pendent and synchronous input rates, νind(t) and νsyn(t)
respectively. Along with the evolution of the popula-
tion density ρ(v1, v2, t), we also compute the output
statistics: the average firing rate rave(t), the synchronous
firing rate rsyn(t), and the output correlation C(τ ; t).
To apply our results to a feed-forward network, we
need a method to transform the output of a presynaptic
population to the input of a postsynaptic population,
taking into account the statistics of the connectivity.

As mentioned in Section 1.2, we will characterize
the connectivity between two populations by both first
and second order statistics. The first order statistic is
W1

jk, the expected number of presynaptic neurons from
population j that project to any postsynaptic neuron in
population k. The second order statistics is W2

jk, the
expected number of presynaptic neurons from pop-
ulation j that simultaneously project to any pair of
postsynaptic neurons in population k. Our goal is to
compute the input rates νk

ind(t) and νk
syn(t) to population
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k based on these connectivity statistics, the output of
each population j, and any external independent input
to population k at rate νk

ext(t). We assume that neurons
from different populations are uncorrelated and neu-
rons within a population are uncoupled.

We consider a pair of neurons in population k. Let
N j

1 be the number of neurons from population j that
project onto the first neuron and N j

2 be the number of
neurons that project onto the second neuron. Further-
more, let N j

3 be the number of neurons from population
j that project onto both postsynaptic neurons. (In the
illustration of Fig. 2, N j

1 = 5, N j
2 = 7 and N j

3 = 2). We
view N j

1, N j
2, and N j

3 as three random numbers with
expected values specified by the connectivity statistics:

E
(

N j
1

)
= E

(
N j

2

)
= W1

jk and E
(

N j
3

)
= W2

jk. To calcu-

late the input rates νk
ind(t) and νk

syn(t), we will first cal-
culate them conditioned on particular values of Nin ={

N j
i

}
and then take the expected values over the Nin.

Define νk
syn(t; Nin) to be the rate of synchronous input

onto neurons 1 and 2, conditioned on particular values
of the Nin. We calculate that this input rate is

νk
syn (t; Nin) =

∑

j

N j
3

(
r j

ave(t) − r j
syn(t)

)

+
∑

j

[(
N j

1−N j
3

)(
N j

2−N j
3

)
+

(
N j

1−N j
3

)
N j

3

+
(

N j
2 − N j

3

)
N j

3 + 2

(
N j

3

2

)]
r j

syn(t)

=
∑

j

[
N j

3r j
ave(t)+

(
N j

1 N j
2−2N j

3

)
r j

syn(t)
]
. (9)

The neurons will receive synchronous input any time
one of the N j

3 neuron projecting to both neurons fires
a spike all by itself (i.e., no other of the presynap-
tic neurons fires synchronously with it). Since we are
calculating only up to second order statistics, we can
approximate the probability per unit time that just a
single neuron fires as r j

ave(t) − r j
syn(t). Multiplying by the

number N j
3 of common input neurons, we obtain the

first sum of Eq. (9).
The second sum of Eq. (9) accounts for the syn-

chronous input to neurons 1 and 2 that results from
one of the N j

1 neurons projecting to neuron 1 firing
synchronously with one of the N j

2 neurons projecting to
neuron 2. This could happen in four ways, correspond-
ing to the four terms in the square brackets. First, one

of the
(

N j
1−N j

3

)
neurons projecting to neuron 1 alone

could fire synchronously with one of the
(

N j
2−N j

3

)
neu-

rons projecting to neuron 2 alone. Second, one of the

(
N j

1−N j
3

)
neurons projecting to neuron 1 alone could

fire synchronous with one of the N j
3 common input neu-

rons. In this case, neuron 1 receives a double input that
is synchronous to a single input to neuron 2. Since our
kinetic theory description does not represent double
inputs to any neuron, we represent this event just as
synchronous input to the pair. Third, we handle in the
same way the event where one of the N j

3 common input

neuron fires synchronously with one of the
(

N j
2 − N j

3

)

neurons projecting to neuron 2 alone. Fourth, if two of
the N j

3 common input neurons fire synchronously, both
neurons 1 and 2 receive synchronous double inputs.
Since our kinetic theory does not represent double
inputs, we model the double synchronous inputs as two
synchronous inputs. Hence, we multiply the number of

pairs
(N j

3
2

)
by two. All these combinations of inputs are

multiplied by the probability per unit time r j
syn(t) that

two input neurons fire synchronously.
The approximations used for the last three terms

in the second sum of Eq. (9) can be justified under
the condition that N j

3 � N j
1 and rsyn � rave. If common

input neurons are relatively rare and the synchrony
isn’t too high, then these last three terms will be small
(quadratic in a small parameter) compared to the other
terms of Eq. (9). For this reason, we expect our ki-
netic theory implementation to perform best under
conditions where the synchronous firing and fraction of
shared input are not too high.

Next, we take the expected value of νk
syn(t; Nin) over

Nin. The only expected value not explicitly specified by
our second order connectivity statistics is the product

E
(

N j
1 N j

2

)
. We simply assume that N j

1 and N j
2 are

uncorrelated so that E
(

N j
1 N j

2

)
= E

(
N j

1

)
E

(
N j

2

)
. We

obtain that the expected rate of synchronous input is

νk
syn(t) = E

(
νk

syn (t; Nin)
)

=
∑

j

W2
jkr j

ave(t) +
∑

j

(
W1

jkW1
jk − 2W2

jk

)
r j

syn(t)

=
∑

j

β jkW1
jkr j

ave(t)+
∑

j

W1
jk

(
W1

jk−2β jk

)
r j

syn(t),

(10)

where β jk = W2
jk/W1

jk is the fraction of shared input
parameter.

The average input to population k is simply the
external input rate νk

ext(t) plus the sum of the W1
jkr j

ave(t),
the average coupling times the average firing rate. As
discussed in Section 2.4, the output of population j will
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contain correlations beyond the synchronous output of
r j

syn(t). However, our kinetic theory equations do not
include delayed correlation in the input. (We neglected
delayed correlation to create a Markov process without
adding additional state variables.) For our first approx-
imation, which we term KT0, we will simply assume
that inputs that are not synchronous are independent.
Under this approximation, the independent input rate
to population k is simply the average input rate minus
the synchronous input rate:

νk
ind(t) = νk

ext(t) +
∑

j

W1
jkr j

ave(t) − νk
syn(t). (11)

This formula not only neglects delayed correlation, but
it also approximates as independent any double input
to a single neuron. (Such double inputs would occur
when a pair of neurons projecting to the given neuron
fire synchronously).

2.6 Accounting for delayed correlation

The delayed correlation described in Section 2.4 may
be more substantial than the instantaneous correla-
tion reflected in rsyn(t). In this case, we may severely
underestimate the correlation by assuming all spikes
not captured by rsyn(t) are independent, as we did for
deriving the coupling conditions (10) and (11). Hence,
we developed another method to capture additional
correlation in our kinetic theory implementation. We
approximated delayed correlation in the output of a
population as though it were correlation with zero
delay.

Approximating delayed correlation as instantaneous
is not as simple as adding Cpeak(t) of Eq. (8) to rsyn(t).
The cross-correlation peak area Cpeak(t) evaluated at
time t is based on output from times t + τ that are later
than t. If we included Cpeak(t) in the input rates at time
t, we would be attempting to use future information to
calculate the evolution of the network at time t.

To avoid using future information, we calcu-
late a modified version of the cross-correlation (7)
based on a quasi-steady state approximation. Rather
than using the density ρcross(v2, τ ; t0) introduced in
Section 2.4, we calculate the evolution of another
density-like quantity that we call ρdelay(v2, τ ; t0). We
calculate the evolution of ρdelay in the same way as
ρcross except that we freeze the input rates at νind(t0)
and νsyn(t0). Moreover, in ρdelay, we wish to look only
at the first spike of neuron 2 after the spike of neu-
ron 1. For this reason, we do not include the reset
terms when evolving ρdelay. To subtract off the expected

distribution of v2 under the assumption that the neu-
rons were independent, we initialize ρdelay by subtract-
ing off the marginal distribution of ρ, multiplied by
the average firing rate: ρdelay(v2, 0; t0) = Jreset,1(v2, t0) −
rave(t0)

∫
ρ(v1, v2, t0)dv1. Although we do not reinject

the reset term into the evolution equation for ρdelay,
we still define cdelay(τ, t0) as the magnitude of this re-
set term (or, equivalently, the flux across threshold).
Since we subtracted off the marginal density in defining
ρdelay(v2, 0; t0), the reset quantity cdelay(τ, t0) reflects
how much more likely neuron 2 was to fire than it
would have fired if the neurons were independent.
In other words, cdelay(τ, t) represents the delayed cor-
relation between the spikes of one neuron at time t
and the subsequent spike of another neuron, subject
to the quasi-steady state approximation that uses no
future information beyond the time t. Given the quasi-
steady state approximation, the correlation with nega-
tive delay is symmetric to the correlation with positive
delay, and we define cdelay(−τ, t)=cdelay(τ, t) for τ >0.
The resulting correlation magnitude analogous to
Cpeak(t) is

r̃syn(t) = rsyn(t) +
∫ τ0

−τ0

cdelay(τ, t)dτ (12)

where τ0 is the delay where cdelay(τ, t) first becomes
negative: τ0 = min{τ > 0 | cdelay(τ, t) ≤ 0}. We denote
this correlation by r̃syn(t) because we will use r̃syn(t)
in place of the synchronous firing rate rsyn(t) in the
coupling Eqs. (10) and (11), effectively assuming that
this correlation was due to synchronous spiking of the
presynaptic neurons. Since we have not included reset
in the calculation of cdelay, we know that the condition
r̃syn(t) ≤ rave(t) is always satisfied.

Our new connectivity equations (reintroducing su-
perscripts to denote population index) are

νk
syn(t) =

∑

j

β jkW1
jkr j

ave(t)

+
∑

j

W1
jk

(
W1

jk − 2β jk

)
r̃ j

syn(t) (13)

νk
ind(t) = νk

ext(t) +
∑

j

W1
jkr j

ave(t) − νk
syn(t). (14)

We refer to this improved kinetic theory implementa-
tion that accounts for delayed correlations as KT1.

Note that there is no guarantee that νk
ind(t) defined

by the above equation will be positive, despite the
fact that we know r̃ j

syn(t) ≤ r j
ave(t). It is possible for the

synchronous input νk
syn(t) calculated from Eq. (13) to
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exceed the total input from presynaptic populations∑
j W1

jkr j
ave(t). Such a nonphysical result is due to ne-

glecting the possibility of three or more simultaneous
inputs. As detailed in Section 4, such combinations
become highly likely as the correlation increases. To
keep physically meaningful values of νk

syn(t), we sim-

ply truncate it to
∑

j W1
jkr j

ave(t), the total input from
presynaptic populations, if the quantity calculated from
Eq. (13) or Eq. (10) exceeds that sum.

The Eqs. (13) or (10) for νsyn(t) contain two sources
for the correlated input to a population. The first sum
describes the emergence of correlations due to the
shared input between a pair of neurons. For example,
when either of the common input neurons of Fig. 2
spikes, it will send synchronous input into the pair of
postsynaptic neurons. The second sum describes the
propagation of correlations through the network. For
example, when a light and dark presynaptic neuron
of Fig. 2 spike synchronously, they send synchronous
input to the postsynaptic neuron pair even though
no connections are shared. The subtraction of 2β is
an approximate correction to control for overcounting
when a common input neuron fires synchronously with
another input neuron. In this way, the kinetic theory
network is designed to capture the emergence and
propagation of correlations in the network and describe
the second order statistics of the network activity.

3 Results

We demonstrate our kinetic theory approach by bench-
marking its output against Monte Carlo simulations
of networks of integrate-and-fire neurons. We first
compare simulations of a single population of non-
interacting neurons in order to demonstrate that the
kinetic theory does accurately represent the response of
neurons to correlated input. Second, we compare simu-
lations of feed-forward networks in order to investigate
how well our kinetic theory implementation captures
the emergence and propagation of correlations through
a network. We simulated the Monte-Carlo networks as
described in Nykamp and Tranchina (2000).

3.1 Single population

As an initial test of our kinetic theory approach, we sim-
ulated the response of a single population of neurons
to correlated input. We numerically solved the kinetic
theory equations (2) as described in Appendix A in re-
sponse to specified independent νind(t) and synchronous
νsyn(t) input rates. Since these single population runs

did not include any network interactions, they simply
reflect the ability of the kinetic theory to capture the
correlated output of neurons in response to correlated
input.

To test the accuracy of the kinetic theory solution,
we simulated 500,000 realizations of a pair of integrate-
and-fire neurons in response to the same input rates.
We stimulated each neuron with an independent
Poisson process with rate νind(t). We also stimulated
both neurons with a third Poisson process with rate
νsyn(t). Since the input to the neurons was Poisson and
correlated only with zero delay, these Monte Carlo sim-
ulations exactly matched the assumptions of our kinetic
theory model. In this way, the Monte Carlo simulations
served simply to test if we correctly implemented our
kinetic theory equations.

Results of one such test are shown in Fig. 6. For this
example, we set the independent input rate νind(t) to
150 spikes per second and the synchronous input rate
νsyn(t) to 100 spikes per second, and allowed the popula-
tion to achieve steady state. Then, we kept the same in-
put rates until t = 0.05 s, at which point we doubled the
input rates to νind(t) = 300 and νsyn(t) = 200 spikes per
second. In response, the average firing rate rave(t), the
synchronous firing rate rsyn(t), and the cross-correlation
peak area Cpeak(t) immediately jumped to higher values
and then settled down to new steady state values. As
expected, the kinetic theory and Monte Carlo estimates
matched exactly in all three cases (Fig. 6(a)). Note that
Cpeak(t) began to increase even before the time of the
input change due to the fact that it includes correlation
of spikes at time t with spikes at future times.

The kinetic theory also accurately captures the form
of the delayed correlation resulting from the correlated
input. As shown in Fig. 6(b), the structure of the cross-
correlation averaged over all neuron pairs is precisely
matched by the kinetic theory. Note that for each pair
( j, k) of neurons, the correlation at a delay τ includes
the effect of neuron j spiking after neuron k and neu-
ron k spiking after neuron j. Therefore, since there
is no structure in the input at steady state, the cross-
correlation must be symmetric with respect to delay
(Fig. 6(b), top). The asymmetry in the transient cross-
correlation (Fig. 6(b), bottom) is due to the asymmet-
ric population activity around the sampled time point.
We obtained equally good matches between kinetic
theory and Monte Carlo simulations for every other
input rate (νind(t) and νsyn(t)) combination we tested.
These results are not surprising because the input in the
Monte Carlo simulations was chosen to exactly match
the assumptions of our kinetic theory implementation.
The results simply serve as verification that we are
solving our kinetic theory equations correctly.
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Fig. 6 Results from a single population of uncoupled neurons.
The kinetic theory results exactly match those from Monte Carlo
simulations. (a) Average firing rave(t) (top), synchronous firing
rate rsyn(t) (middle), and cross-correlation peak area Cpeak(t)
(bottom) are plotted in response to a jump in independent νind(t)
and synchronous νsyn(t) input rate at time t = 0.05 s. The his-
tograms from the Monte Carlo simulations coincide with the
values obtained from solving the kinetic theory equations. (b)
Cross-correlation averaged over the steady state (t > 0.15 s) and
cross-correlation from the transient peak in Cpeak(t) (t = 0.054 s)

are plotted versus delay. The Monte-Carlo data was binned using
a bin width of 
t = 0.5 ms. The kinetic theory cross-correlation
contains a delta function at zero delay. The delta-function mag-
nitude was divided by 
t = 0.0005 s and added to the value of
the continuous correlation at zero delay. Since the kinetic theory
correlation is sampled every half millisecond, this procedure
effectively smooths the delta-function over a half millisecond
window so that the results match the bin width used in Monte
Carlo

3.2 Feed-forward network

To test the ability of our kinetic theory implementation
to capture the emergence and propagation of correla-
tions through a network, we examined its performance
with a ten layer feed-forward network. It is well-known
that synchronous activity develops in deeper layers of
a feed-forward network (Diesmann et al. 1999; Câteau
and Fukai 2001; Reyes 2003; Hasegawa 2003; Wang
et al. 2006; Masuda and Aihara 2002; Litvak et al.
2003; van Rossum et al. 2002; Doiron et al. 2006). By
comparing the kinetic theory results to Monte Carlo
simulations of the feed-forward network, we could as-
sess how well the kinetic theory could model the build-
up of correlations underlying such synchrony.

3.2.1 Illustration of the build-up of correlations

To illustrate the build-up of correlations, we simulated
the response of feed-forward networks to a step input,
where at time t0 we instantaneously increased the inde-
pendent Poisson input to layer 1 from ν1

ind,ext(t) = 200
spikes per second to ν1

ind,ext(t) = 300. Each layer k > 1
received independent Poisson input at constant rate
νk

ind,ext(t) = 200 in addition to the input from the pre-
vious layer. Unlike the single population simulations,
we did not add any external synchronous input as we
wished to explore the synchrony that emerged from the
network.

We created networks with N neurons per layer and
randomly connected neurons from each layer onto the
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subsequent layer so that the expected number of con-
nections onto each neuron was W1 = 10. (To accom-
plish this, we randomly selected each of the possible N2

connections between a pair of layers with probability
W1/N).

An example of the emergent synchronous activity in
feed-forward networks is illustrated in Fig. 7(a). For
the network with N = 100 neurons per layer (Fig. 7(a),
left column), peaks in the histogram begin to emerge
in layer 6 and become prominent in layer 10. These
peaks correspond to many neurons firing synchro-
nously within a 
t = 10 ms time window, as the his-
togram is based on a bin width of 
t.

In the network with N = 1,000 neurons per layer
(Fig. 7(a), right column), this synchrony does not ap-
pear to emerge, at least in 10 layers, as the histograms
remain relatively flat even in layer 10. Such observa-
tions make it seem that such synchronization is a finite-
size effect and that the number of neurons N plays a
critical role in determining the emergence of synchrony

(Doiron et al. 2006). We will reexamine this hypothesis
below.

The build-up of correlations is illustrated in Fig. 7(b).
For the network with N = 100 neurons per layer
(Fig. 7(b), left column), the cross-correlation for layer 6
contains a large peak centered around zero delay, and
this peak is much larger in layer 10. On the other hand,
when N = 1,000, the cross-correlation has only a small
peak even in layer 10 (Fig. 7(b), right column). Our goal
is to capture this build-up of correlation with our kinetic
theory model.

The difficulty of capturing the synchrony with kinetic
theory models is illustrated in Fig. 8. The kinetic theory
can be thought of as representing the distribution of
neuron responses over many realizations of the net-
work response. Figure 8 shows histograms of the spikes
of layer 10 of the network with N = 100 neurons per
layer. For each of the four top panels, the same input
used for Fig. 7(a) was presented, except that the step
in input rate to layer 1 (i.e. the stimulus) occurred at
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Fig. 7 Illustration of the build-up of correlations within a feed-
forward network with ten layers. (a) A histogram of the firing
times of all neurons in a layer binned at 
t = 10 ms, normalized
to firing rate in spikes per second. The input rate to layer 1 was
increased at time t0 = 1 s (indicated by the arrow). Layers 2, 6,
and 10 are shown for a network with N = 100 neurons per layer
(left column) and N = 1,000 neurons per layer (right column).
For the N = 100 network, sharp peaks in the histograms of layers
6 and 10 indicate simultaneous firing of many neurons within a

single time bin. For the N = 1,000 network, although the neurons
are firing at a similar rate, no strong peaks indicating synchrony
are visible. (b) The cross-correlation calculated from the steady
state (t > 2 s) and averaged among all pairs of neurons. Each
panel corresponds to the simulation of the respective panel in (a).
For the network with N = 100 neurons per layer, a strong peak in
the cross-correlation is evident in layers 6 and 10 (note different
scale for layer 10). For the N = 1,000 network, the correlation is
small even in layer 10
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Fig. 8 The timing of synchronous bursts of activity will vary with
different presentations of the same input. The feed-forward net-
work with N = 100 neurons per layer was repeatedly stimulated
with the input of Fig. 7, except that the step of the input occurred
at t0 = 0.05 s (arrows). The histogram of activity of the layer
10 neurons in response to four different presentations is shown
in the top four panels. Plot is the same as the bottom left of
Fig. 7 except for a smaller bin width of 
t = 2 ms and smaller
range of times. The bottom panel is a peristimulus time histogram
(PSTH) showing the average of 4,000 such presentations of the
stimulus. Since the synchronous peaks in response to different
presentations occurred at different times, the PSTH averages out
the peaks and is flat after an initial transient

t0 = 0.05 s. In this case, we bin the spikes at a smaller
resolution of 
t = 2 ms and show only 0.4 s of data.
In response to each of the four stimulus presentations,
the layer 10 neurons show a high degree of synchrony
as evidenced by the sharp peaks in the histograms.
However, as the stimulus after t0 is constant, there
is no temporal structure that could align the times at
which those peaks occur. Hence, in each of the four
presentations, the synchronous peaks occur at different
times.

The average over 4,000 stimulus presentations is
shown in the bottom panel of Fig. 8. In this peristimulus
time histogram (PSTH) we see a transient of increased
firing rate soon after t0, but then the firing rate settles
down to a constant value. There is no indication that the

neurons actually continued to fire synchronously. Due
to the distribution of different times of the synchronous
peaks, the average removes all of the temporal struc-
ture in the firing rate.

Since kinetic theory represents this average re-
sponse, the average firing rate rave(t) will not include
any evidence of the synchronous firing, but instead
should approach a constant value during the steady
state period. We cannot capture the synchronous peaks
of Fig. 7(a). Instead, our goal is a kinetic theory repre-
sentation of the feed-forward network that captures the
build-up of correlations of Fig. 7(b).

3.2.2 Demonstration of kinetic theory results

To compare the kinetic theory with the Monte Carlo
simulations of the feed-forward networks, the first step
is to calculate the connectivity statistics for the kinetic
theory discussed in Section 2.5. As described above,
we generate connections between two layers so that
each connection has probability W1/N, where N is the
number of neurons per layer and W1 = 10. Since for a
given postsynaptic neuron, N possible connections are
chosen with probability W1/N, the number W1 is the
expected number of connections.

The expected number of shared connections onto
any pair of postsynaptic neurons can be calculated
from the assumption that all connections are generated
independently. For any of the N possible presynaptic
neurons, it has probability W1/N being connected to
the first neuron of the pair and probability W1/N being
connected to the second. Given that the connections
are generated independently, the probability of be-
ing connection to both neurons in the pair is simply
(W1/N)2. Multiplying by the N possible presynaptic
neurons, and we calculate that the expected number of
shared connections onto any pair of neurons is W2 =
(W1)2/N. Hence, the fraction of shared connections
parameter is β = W2/W1 = W1/N.

We simulated feed-forward networks with N = 50,
100, 200, and 1,000 neurons per population. We ran-
domly generated a single network and presented the
above step input 400,000/N times, as in Fig. 8. Before
beginning each presentation, we allowed the network
to equilibrate to steady state in response to the lower
input rate (νk

ind(t) = 200 spikes per second for all lay-
ers). Then, we began to record spikes and jumped the
input to layer 1 up to ν1

ind(t) = 300 spikes per second at
time t0 = 0.05 s.

For each N, we calculated β = W1/N and created
a kinetic theory representation of the network. The
kinetic theory network consisted of ten population,
where each population corresponded to a layer of the
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network. We initially numerically solved the kinetic
theory equations in response to the lower input rate
(νk

ind(t) = 200 spikes per second for all layers) to calcu-
late the steady state distribution for that input. Using
that distribution as the initial conditions, we numeri-
cally solved the kinetic theory equations in response to
the input described above, increasing the input to layer
one at time t0 = 0.05 s.

For each network, we computed the kinetic theory
response using two methods of approximating delayed
correlation in the output of each population. In the first
method (KT0), we ignored any correlation with non-
zero delay in the output of each presynaptic population
and computed the input to the corresponding postsy-
naptic population as though non-synchronous spikes
were independent (using Eqs. (10) and (11) to connect

populations). In the second method (KT1), we approxi-
mated delayed correlation as though it were correlation
with zero delay (using Eqs. (13) and (14) to connect
populations). In either case, the input to each popu-
lation k > 1 was a combination of independent and
synchronous Poisson input; we did not include delayed
input correlation in our kinetic theory implementation.

The results for β = 0.05 (i.e., N = 200 in the Monte
Carlo simulations) are shown in Fig. 9. The average
firing rate rave(t) (Fig. 9(a)) of the kinetic theory closely
matched the Monte Carlo for both KT0 and KT1. At
least for this network, assuming Poisson input to each
layer did not greatly alter the first order output statistic
rave(t).

For the cross-correlation peak area Cpeak(t)
(Fig. 9(b)), the results had a dramatic dependence
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Fig. 9 Comparison of Monte Carlo and kinetic theory results for
the network with β = 0.05 (N = 200 in Monte Carlo). The input
rate to layer 1 is stepped up at time t0 = 0.05 s (arrows). (a) The
average firing rate rave(t) is plotted for layers 2, 6, and 10. For
Monte Carlo simulations, we plot a normalized peristimulus time
histogram. The kinetic theory results based on ignoring delayed
correlation in the neural output (KT0) are plotted by the thin
line. The thick line indicates the kinetic theory results where
delayed correlation is approximated as though it were instan-

taneous correlation (KT1). Both kinetic theory approximations
result in nearly identical estimates of rave(t), which underestimate
the Monte Carlo results only slightly in the deeper layers. (b) The
cross-correlation peak area Cpeak(t) is plotted for layers 2, 6 and
10. The same plotting convention as panel (a) is followed. KT0
fails to show the build-up of correlation in deeper layers. KT1
captures the correlation build-up, though correlation magnitude
is overestimated
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on the delayed correlation method. If we completely
ignored delayed correlation (KT0), the kinetic theory
failed to show the build-up in the correlation in the
deeper layers of the network. On the other hand, when
we approximated delayed correlation as instantaneous
correlation (KT1), the kinetic theory was able to
show the correlation increase. As instantaneous
correlation has a stronger effect on neural response
than delayed correlation, the approximation resulted
in an overestimation of the actual magnitude of the
correlation peak. But, the method captured the essence
of how the correlations built up in the network.

Clearly, completely ignoring delayed correlation
(KT0) fails miserably to capture the build-up of corre-
lations. Approximating delayed correlation as instanta-
neous correlation (KT1) appears to be a much better
method to handle the delayed correlation. From now
on, we will focus our attention on KT1.

If we doubled the fraction of shared input to β = 0.1
(halved the number of neurons to the N = 100 of Figs. 7
and 8), our kinetic theory implementation matched
the Monte Carlo results less accurately (Fig. 10). KT1
captures the build-up of correlations up through layer
6, still overestimating the correlation magnitude. How-
ever, by layer 10, correlation peak area calculated by
KT1 is only about 70% that of the Monte Carlo at
steady state. Even the first order statistic rave(t) is
slightly underestimated by KT1. The approximations
underlying our kinetic theory implementation do in-
deed begin to break down at this high level of correla-
tion, as predicted by the assumptions of our derivation
in Section 2.5. We discuss some practical remedies in
Section 4.

We examine the structure of the steady-state cross-
correlation for these two networks in Fig. 11. Since
we approximated delayed correlation as instantaneous,
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Fig. 10 Comparison of Monte Carlo and kinetic theory results
for the network with β = 0.1 (N = 100 in Monte Carlo). Panels
as in Fig. 9. For this large fraction of shared connections β,
KT1 captures the initial build-up of correlations as shown in

layer 6 (overestimating the actual magnitude as expected), but
underestimates the increased correlation in deeper layers. KT0
grossly underestimates the correlations. For both methods, the
average firing rate is slightly underestimated in deep layers



354 J Comput Neurosci (2009) 26:339–368

0

50

100
 = 0.05

Layer 2

0

200

400

600

C
ro

ss
–

co
rr

el
at

io
n 

(s
pi

ke
s/

se
co

nd
2 )

Layer 6

–10 0 10
0

500

1000

1500

Delay (ms)

Layer 10

0

50

100
  = 0.1

 

 
Monte Carlo
KT1
KT0

0

200

400

600

–10 0 10
0

500

1000

1500

Delay (ms)

β β

Fig. 11 Comparison of the structure of steady state cross-
correlation for layers 2, 6, and 10 of the β = 0.05 network of
Fig. 9 (left column) and the β = 0.1 network of Fig. 10 (right
column). The Monte Carlo and kinetic theory cross-correlations
were computed as in Fig. 6(b); in particular, the delta-function
component of the kinetic theory correlation was smoothed over
a 
t = 0.5 ms bin centered at the origin. In each panel, the central
peak of the cross-correlation, which is used to calculate the peak
area Cpeak(t), is shown in main plot. For the deeper layers of

the β = 0.05 network and the intermediate layers of the β = 0.1
network, KT1 overestimates the correlation at zero delay. By
layer 10 of the β = 0.1 network, KT1 no longer overestimates
the zero delay correlation and significantly underestimates it at
non-zero delay. The insets show the correlation over a larger
range of delays to reveal the negative correlation at longer delays,
which are not captured by KT1. KT0 uniformly underestimates
the correlation by a large margin

we do not expect KT1 to accurately reproduce all the
structure of the cross-correlation as a function of delay.
Indeed, for the β = 0.05 network, KT1 grossly over-
estimates the correlation at zero delay in the deeper
layers (left column of Fig. 11). This greater correlation
at zero delay explains the overestimate of the peak
area Cpeak(t) as compared to Monte Carlo. As shown
by the insets, KT1 also misses most of the negative
correlation at larger delays, although this correlation

is not included in the peak area Cpeak(t) plotted in
Fig. 9(b).

For the β = 0.1 network, KT1 overestimates the cor-
relation with zero delay only in the intermediate layers.
By layer 10, the zero-delay correlation from the Monte
Carlo simulations is as large as KT1 correlation despite
the fact that KT1 assumes the all the input correlation
is at zero delay. KT1 significantly underestimates the
correlation at non-zero delay so that the total area in
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the peak is well under that of the Monte Carlo, as
shown in Fig. 10(b).

The cross-correlation of layer 10 for the β = 0.01
(i.e., N = 1,000 for Monte Carlo) and β = 0.2 (i.e., N =
50 for Monte Carlo) networks are shown in Fig. 12. For
β = 0.01, only a small amount of correlation has built
up over 10 layers (c.f., 1,000 neuron plots of Fig. 7). As
with the β = 0.05 case, KT1 overestimates the cross-
correlation peak area Cpeak(t) for all times after stim-
ulus onset (top of Fig. 12(a)) due to an overestimate
of small-delay correlation (top of Fig. 12(b)). For the
β = 0.2 network (bottom of Fig. 12), the underesti-
mate of the correlation already seen with β = 0.1 has
become much more dramatic. The KT1 estimate differs
little from that of β = 0.1, although the correlation in
the Monte Carlo network doubled. Clearly, the current
implementation of the kinetic theory cannot capture
the high degree of correlation seen with the higher
β networks. Even the correlation at zero delay (bot-
tom of Fig. 12(b)) is substantially underestimated by
KT1.

The steady-state results from all four networks are
shown in Fig. 13. The average firing rate (left column) is

accurately estimated by both KT0 and KT1, except for
small underestimates in the deeper layers for the larger
βs. For the cross-correlation peak area (right column),
KT0 fails to capture even the small correlations of
the small β networks. On the other hand, KT1 does a
reasonable job estimating (albeit overestimating) the
correlation as long as the correlation isn’t too large.
Since the KT1 estimate of cross-correlation peak area
Cpeak seems to saturate at around 2.4 spikes per second,
the correlation estimated by KT1 falls well behind the
actual correlation observed in the Monte Carlo net-
works in the β = 0.1 and β = 0.2 networks. By layer
10 for β = 0.1 and layer 7 for β = 0.2, the networks
appear to be too correlated for the approximations
underlying our kinetic theory implementation. We con-
clude that KT1 captures the build-up of steady-state
cross-correlation in feed-forward networks up through
moderate levels of correlation but fails in cases with
strong correlation.

As a further test of the kinetic theory, we ran ad-
ditional groups of simulations. We used three differ-
ent values of expected number of connections: W1 =
8, 10, and 12. For each of these values, we ran two
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Fig. 12 Comparison of the cross-correlation in layer 10 for the
networks with β = 0.01 (N = 1,000 for Monte Carlo) and β =
0.2 (N = 50 for Monte Carlo). (a) The cross-correlation peak
area Cpeak(t) is plotted versus time. Panels as in Fig. 9(b). The
small correlation in the β = 0.01 network is slightly overesti-
mated by KT1. The large correlation in the β = 0.2 network is

substantially underestimated by KT1 (b). The cross-correlation is
plotted versus delay. Panels as in Fig. 11. KT1 overestimates the
small-delay correlation for the β = 0.01 network and uniformly
underestimates the correlation for the β = 0.2 network. KT0
misses the correlation in all cases
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Fig. 13 Comparison of the steady state values of the average
firing rate rave and cross-correlation peak area Cpeak for all layers
of the four tested networks with β = 0.01, 0.05, 0.1 and 0.2.
Both KT1 and KT0 approximate the steady-state firing rate fairly
well for all networks. For β ≤ 0.05, KT1 captures the build-up
of correlations through all ten layers of the network, though it

overestimates the magnitude. For the β = 0.1 and 0.2, KT1 only
captures the initial build-up of correlation in the first layers of
the network but fails to estimate the large degree of correlation
that occurs in the deeper layers. KT0 severely underestimates all
correlations

groups of simulations: one where we set the external
input rates νk

ind,ext so that each population fired around
10–15 spikes per second (the “low rate” group) and
another where we set the νk

ind,ext so that each population
fired around 50–60 spikes per second (the “high rate”
group). The simulations shown above were therefore
from the W1 = 10, low rate group. For each group, we
simulated networks with various β, comparing the KT1
and Monte Carlo results at steady state.

As shown in Fig. 14, KT1 captures the steady state
correlation in all networks as long as the correlation
isn’t too high. For each layer 2 and above (for
layer 1, the correlation is zero), we plotted a point

corresponding to the steady state correlation Cpeak as a
fraction of the average firing rate rave calculated by KT1
and Monte Carlo simulations. For Cpeak/rave less than
about 0.1, the points lie above the diagonal, confirming
that the KT1 captures the build-up of correlations in all
these networks, slightly overestimating the magnitude.
Depending on the average connectivity W1 and firing
rate, KT1 reaches a point where the correlation it
can represent saturates at some maximal value. For
network layers where the correlation estimated by
Monte Carlo simulations exceeded this maximum
value, the KT1 limitation lead to underestimation of
the correlation.
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Fig. 14 Comparison of the steady state correlation calculated
from KT1 and Monte Carlo for many networks and layers 2
through 10. The cross-correlation peak area Cpeak is plotted as
a fraction of the average firing rate rave. The KT1 network tends
to overestimate the cross-correlation until KT1 saturates at its
maximum possible correlation. (Points where the Monte Carlo
Cpeak/rave > 0.3 were omitted; in these cases, the KT1 values
simply stayed at the saturation point.) For all “low rate” simu-
lations, we set the input to layer to be ν1

ind,ext = 300 spikes per
second, and for all “high rate” simulations, we set ν1

ind,ext = 600
spikes per second. For the remaining layers k > 1, the external
input νk

ind,ext = ν0 varied by networks as follows (all values in
spikes per second). W1 = 8: low rate ν0 = 220, high rate ν0 = 300.
W1 = 10: low rate ν0 = 200, high rate ν0 = 200. W1 = 12: low rate
ν0 = 175, high rate ν0 = 110

3.2.3 The sufficiency of second order connectivity
statistics

We are developing our kinetic theory approach based
on the hypothesis that second order statistics of neu-
ronal activity are sufficient to describe much of the
behavior of neuronal networks (Schneidman et al. 2006;
Shlens et al. 2006; Tang et al. 2008; Yu et al. 2008).
We do not test this hypothesis directly here, as we have
been examining output statistics of only first and second
order (average firing rate and cross-correlation). Even
so, we can indirectly test one implicit assumption of
the approach: that second order connectivity statistics
(expected number of inputs W1 and fraction of shared
inputs β) are sufficient to determine the second order
statistics of the network output. We can test this hy-
pothesis by simulating networks with different types of
connectivity patterns that have the same second order
connectivity statistics but differ in third and higher
order statistics.

In Appendix B, we calculate the statistics W1 and β

for networks with prescribed outgoing degree distrib-
utions and with incoming degree distributions that are
equivalent to those of the random networks described
above. Then, we generated multiple ten layer feed-
forward networks with W1 = 10 and various values of
β between 0 and 0.2. We simulated the networks to
the same input conditions as in the W1 = 10, low rate,
networks described above and calculated the steady-
state values of the average firing rate rave and cross-
correlation peak area Cpeak for layer 10.

For each set of network parameters, we performed
two types of Monte Carlo simulations. First, we ran-
domly generated a single network and simulated the
response of this fixed network to 400 max(1, 1000/N)

presentations of the input, where N is the number of
neurons per layer. This first type of simulation cor-
responds to the Monte Carlo simulations employed
above. For the second type of Monte Carlo simulation,
we simulated the network response to the same number
of presentations of the input, but this time, for each
input presentation, we regenerated a new realization
of the network. By rewiring the network for each re-
alization, we averaged over the fluctuations due to par-
ticular network configurations so that we could better
estimate how the output statistics depend on the type of
network. Note that the kinetic theory networks are de-
signed to capture the behavior of the average network
with particular network statistics as represented by the
latter type of Monte Carlo simulations.

We simulated Monte Carlo networks with seven
different degree distributions. The first network class
was composed of random networks, as described above
(which have a binomial degree distribution). The sec-
ond consisted of networks with outgoing degree distri-
butions that followed a power law. Then, we simulated
networks with a power-law outgoing degree distribu-
tions, except that we truncated the maximum outgoing
degree at different values: 100, 500, 2,000, and 5,000.
(Clearly, these differed from the networks with the
unmodified power-law distribution only if the number
of neurons per layer N was larger than the cutoff.)
Lastly, we simulated networks with outgoing degree-
distributions that were Gaussian.

As described in Appendix B, each class of networks
has a single free parameter once the layer size N was
specified. This parameter was set to match the condi-
tion that the expected number of incoming connections
was W1 = 10. The value of that parameter determined
the fraction of shared input β. In this way, for each
class of network, β was a function of N. Since this
function depended on the class of network, we could
obtain different values of β for each N. By examining
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the output statistics rave and Cpeak evaluated for the
steady state of layer 10, we could investigate if these
output statistics were primarily determined by β (as
we hypothesize in the formulation of the kinetic theory
equations) or by the layer size N (as Fig. 7 seemed to
indicate).

The results of these simulations are shown in Fig. 15.
If we look only at networks where we regenerated the
network circuitry for each realization (filled symbols),
we see that both the average firing rate rave (Fig. 15(a))
and the cross-correlation peak area Cpeak (Fig. 15(b))
are very well approximated as functions of β. (The
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Fig. 15 Steady state values of average firing rate rave and cross-
correlation peak area Cpeak in layer 10 for different classes of
networks. Filled symbols correspond to Monte Carlo simulations
of averaged networks, where the network connectivity was re-
generated at each realization. Open symbols correspond to a
simulations of a single fixed network of the same network class
as the corresponding filled symbol. The number for the power
law networks indicates the maximum outgoing degree allowed.
(a) The firing rate for averaged networks increases modestly with
β, and the fixed network values are more scattered. The KT1 and
KT0 results are similar to the averaged networks, though they
show little increase with β. (b) The cross-correlation peak area
Cpeak for averaged networks appears to be nearly a function of

β, as the filled symbols lie along a single curve. Open symbols
are scattered around the filled symbols, indicating the variability
observed among the fixed networks. Inset is detail of results for
β ≤ 0.05 (shaded region). In this range, KT1 is a good approx-
imation of the averaged network results, though the magnitude
is overestimated. For larger β, KT1 does not show the increase
in Cpeak with β. KT0 fails to capture Cpeak even for small β. For
display purposes, Cpeak was truncated to 10 for two points. (c)
The cross-correlation peak area Cpeak is not well approximated
as a function of layer size N. For any value of N, the correlation
depends strongly on the type of network. To correspond to panel
(b), only points with β ≤ 0.2 are shown
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open symbols corresponding to simulations of fixed net-
works have a large spread around the filled symbols.)
Moreover, for β ≤ 0.05, the functions of β given by
the filled symbols are close to that predicted by KT1
(though the KT1 curve overestimates the magnitude
the cross-correlation). Importantly, even for large β the
filled symbols nearly lie along a curve, indicating that
the second order connectivity statistics are sufficient to
determine the second order output statistics. Although
the KT1 curve strongly deviates from the Monte Carlo
curve for large β, the fact that the Monte Carlo points
lie along a single curve indicates that it may be possible
for a kinetic theory based on W1 and β to capture the
full range of correlations (see Section 4).

In contrast, the plot of Cpeak versus N (Fig. 15(c))
indicate that layer size N is not a good predictor of
the correlation if the class of network is not specified.
Even the filled symbols have a large spread for all layer
sizes. If one restricts attention to a particular network
class, then the filled symbols do fall along a single curve,
which is due to the fact that β is a function of N
when the network class is fixed. These results clearly
demonstrate that the fraction of shared input β, not
layer size N, is critical for determining the build-up of
correlations in feed-forward networks.

As a final illustration of the fact that the first and
second order connectivity statistics, not network size,
determine the network behavior, we created four dif-
ferent networks with vastly different sizes and the same
connectivity statistics. In each case, we created net-
works to match the connectivity statistics W1 = 10 and
β = 0.05 of the network from Fig. 9. If we used a power
law outgoing degree distribution capped at 5,000, we
needed N = 17,500 neurons per layer to reduce β down
to 0.05. Capping the outgoing degree at 2,000 and 500
reduced the layer size to N = 8,350 and N = 2,750,
respectively. In comparison, the random network of
Fig. 9 had only N = 200 neurons per layer. For each
network, we stepped up the input rate at t = 0.05, using
the input rates for Fig. 9. We presented this input 2,000
times and regenerated the circuitry for each realization.

The neuronal output of layer 10 of each network is
shown in Fig. 16. The activity of each network is similar,
indicating the first and second order connectivity statis-
tics did determine most of the behavior. Some minor
differences are that the random network had slightly
lower steady state correlation and some of the power
law networks appeared to have a larger transient corre-
lation in response to the input step. Hence, although the
second order connectivity statistics did not determine
every detail of the neuronal activity, the connectivity
statistics W1 and β did capture the essential features of

the connectivity needed to describe most of the second
order statistics of the network activity.

4 Discussion

We have developed a kinetic theory approach that
captures the build-up of correlations in feed-forward
neural networks as long as the cross-correlation does
not become too large. We demonstrated that although
approximating delayed correlation as instantaneous
correlation resulted in an overestimate of the magni-
tude of output cross-correlation, it accurately repre-
sented how the correlations increased with respect to
layer and with respect to fraction of shared inputs in
the connectivity structure.

4.1 Sufficiency of second order connectivity

Our goal is to use a second order kinetic theory descrip-
tion to describe the behavior of neuronal networks.
We base this goal on the assumption that describing
neuronal activity via second order statistics will be suf-
ficient to explain much of the behavior of the networks
(c.f., Schneidman et al. 2006; Shlens et al. 2006; Tang
et al. 2008; Yu et al. 2008). In order to derive equations
by which to couple the population densities of the
kinetic theory, we distilled the network connectivity
patterns between two populations into first and second
order statistics. Our hypothesis was that these first and
second order connectivity statistics would be sufficient
to specify the resulting first and second order statistics
of the neuronal activity. It is not obvious that such a hy-
pothesis should be true, and we expect that higher order
statistics will have some effect. For example, the second
order connectivity statistic β does have a small effect
on the first order output statistic rave, as shown by the
slight increase of the filled dots with β in Fig. 15(a). The
fact that we demonstrated that the cross-correlation
peak area is primarily determined by β (for fixed first
order statistic W1 and fixed input rates) is encouraging
support of the notion that our kinetic theory ap-
proach may be able to capture the fundamental mech-
anisms underlying the emergence and propagation of
correlations.

One caveat should be stressed. In all the Monte
Carlo networks we used to generate Fig. 15, we varied
only the outgoing degree distribution of the nodes. We
did not, for example, create networks with power law
incoming degree distributions. Especially since we do
not include inhibition, we could not include neurons
that had 100 times more inputs than average. If we did,
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Fig. 16 Comparison of layer 10 results from four different net-
works with different numbers of neurons but the same connec-
tivity statistics (W1 = 10 and β = 0.05). The top row is a network
with N = 17,500 neurons per layer and a power law outgoing de-
gree distribution capped at a maximum outgoing degree of 5,000.
In the second and third row, the power law degree distribution
was capped at 2,000 and 500, respectively, and the number of
neurons per layer was 8,350 and 2,750, respectively. The fourth
row is a random network with N = 200 neurons per layer. In each
case, network activity was obtained in response to 2,000 realiza-
tions of same input as for Figs. 9–13, and the network circuitry

was regenerated for each realization. Except for this circuitry
regeneration, the fourth row is the same as the bottom row of
Fig. 9 and the bottom left of Fig. 11. The kinetic theory results
are simply replotted for each row. (a) Average firing rate rave(t)
plotted as in Fig. 9(a). (b) Cross-correlation peak area Cpeak(t)
plotted as in Fig. 9(b). (c) Steady state cross-correlation structure
plotted as in Fig. 11. Despite the vastly differing network size,
the network output is similar because for each network class,
we chose the network size to match the connectivity statistics
W1 = 10 and β = 0.05

those neurons would have fired at unreasonable rates.
Hence, in all networks, we always assigned postsynaptic
targets randomly.

4.2 Related kinetic theory and correlation analyses

Our kinetic theory approach is based on the population
density formulation of interacting neuronal populations
introduced by Knight, Sirovich, and colleagues (Knight
et al. 1996; Omurtag et al. 2000b; Sirovich et al. 2000;
Omurtag et al. 2000a; Knight 2000; Casti et al. 2002;

Sirovich et al. 2006; Sirovich 2008) that was further
developed by Tranchina and colleagues (Nykamp and
Tranchina 2000, 2001; Haskell et al. 2001; Apfaltrer
et al. 2006). Although there are many examples of using
kinetic theory to model neuronal networks (Abbott
and van Vreeswijk 1993; Barna et al. 1998; Brunel and
Hakim 1999; Gerstner 2000; Câteau and Fukai 2001;
Hohn and Burkitt 2001; Mattia and Del Giudice 2002;
Moreno et al. 2002; Meffin et al. 2004; Câteau and
Reyes 2006; Doiron et al. 2006; Cai et al. 2006; Huertas
and Smith 2006), most approaches do not explicitly rep-
resent correlations among neurons but instead assume
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each neuron in a population is an independent sample
from the distribution.

A notable exception is upcoming work by de la
Rocha et al. (2008) where they also develop a kinetic
theory based on a pair of neurons with correlated input.
In their case, they assume the inputs are Gaussian white
noise and are even able to derive an analytical formula
for the output cross-correlation. Their goal is also to
study how correlated activity propagates over multiple
layers of a network.

There have been many studies characterizing how
correlated inputs to uncoupled neurons lead to corre-
lated outputs (Dorn and Ringach 2003; Galán et al.
2006; Svirskis and Hounsgaard 2003; Moreno-Bote and
Parga 2006; Binder and Powers 2001; Shadlen and
Newsome 2001). Recent results have shown how under
certain circumstances, the amount of input correlation
that is transfered to output correlation depends primar-
ily on the firing rate (de la Rocha et al. 2007), and
one can further characterize this relationship between
input and output correlation (Shea-Brown et al. 2008).
One additional challenge we have faced in our kinetic
theory implementation is how to transform the output
correlation of a presynaptic population into the input
correlation of its postsynaptic population.

Our application of kinetic theory to correlations in
feed-forward networks was motivated by experimental
observations of the emergence of sustained synchrony
in such networks (Reyes 2003) and applications of ki-
netic theory to understand their properties (Câteau and
Reyes 2006; Doiron et al. 2006). The authors discovered
typical kinetic theory implementations miss the build-
up of sustained synchrony. Although an ad hoc finite-
size correction (Brunel and Hakim 1999; Mattia and
Del Giudice 2002; Hohn and Burkitt 2001) can restore
elements of this synchrony (Doiron et al. 2006), it does
not explicitly model the correlations that underlie the
synchrony.

Our use of the term kinetic theory is motivated by
similarities to the kinetic theory of gases and plasmas.
However, our approach differs from the kinetic theory
of gases and plasmas in two main ways. First, in our
system, the particles (neurons) are inherently stochas-
tic since we model their inputs as Poisson processes.
Second, in our feed-forward network model, we view
each population as containing non-interacting neurons.
Consequently, the evolution equation for the second
order density ρ does not depend on higher order
correlations. In standard kinetic theory approaches,
one develops a BBGKY (Bogoliubov–Born–Green–
Kirkwood–Yvon) moment hierarchy (Ichimaru 1973;
Nicholson 1992), and then makes an approximation to
truncate the hierarchy and obtain a closed system of

equations. For example, this was the approach used
for a kinetic theory model of coupled oscillators by
Hildebrand et al. (2007). Our feed-forward model does
not require such a moment closure assumption to ob-
tain an evolution equation for ρ. Instead, we must make
a moment closure assumption to determine the input
to each population because the evolution of the second
order density depends on higher order moments of the
input. For this initial work, we used a simple truncation
of ignoring triplet or higher order synchronous input.
We propose an improved closure below.

4.3 Extending the approach to higher correlations

We have demonstrated that our current kinetic theory
implementation (KT1) works well up to moderate lev-
els of correlation but that it fails to capture the network
behavior once the correlation becomes too large. The
result is understandable given the assumptions we in-
voked to derive the network equations in Section 2.5.
In particular, the kinetic theory equations (2) include
input rates representing only independent input to a
single neuron and synchronous arrival of a single input
to each of a pair of neurons. The equations neglect the
possibility that two (or more) synchronous inputs could
arrive at the same neuron. Such an event would lead
to a voltage jump of double (or larger) size. A double
jump is more effective in driving a neuron than two
independent jumps of normal size. Since such double
jumps become more common with increased network
synchrony, they are presumably behind the increase in
firing rate rave(t) with β that is not captured by KT1
(Fig. 15(a)).

The double-sized jumps have an even more profound
effect on cross-correlation because the double jumps in
one neuron’s voltage could occur simultaneously with
jumps (or double jumps) in another neuron’s voltage.
These synchronous jumps of double (or larger) size
lead to correlations that are not captured by our kinetic
theory equations, as they are limited to synchronous
jumps of normal size. The saturation to maximal pos-
sible correlation in Figs. 14 and 15(b) occurs when
the expression (13) for the synchronous input rate νsyn

becomes larger than the total input from presynaptic
populations. To ensure that the independent input rate
νind given by Eq. (14) is not smaller than the exter-
nal input rate νext (which we know is independent),
we truncate νsyn to the total input from presynaptic
populations. For the given average firing rate and the
given external input rates, it is simply impossible for
the kinetic theory equations to yield higher correlation
than observed in Figs. 14 and 15(b). By looking at single
populations with prescribed input rates νind and νsyn,
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we confirmed that the saturation points of our kinetic
theory implementation correspond to the point where
all input to the population is synchronous except the
independent input corresponding to the external input
rate νext.

To extend the validity of our kinetic theory equa-
tions to higher levels of correlation, we must aug-
ment the equations with terms corresponding to double
jumps. We would need to add terms corresponding to
independent double jumps in one neuron, synchronous
double jumps in both neurons, and double jumps in one
neuron that were synchronous with single jumps in the
other. In this way, we could fully represent the pattern
of inputs to a pair of neurons that could result from a
pair of presynaptic neurons firing synchronously.

Such an augmentation of the equations would not
account for the input patterns from a highly synchro-
nous presynaptic population. In the highly synchronous
case, three or more neurons may be highly likely to
fire simultaneously. Such firing patterns will lead to
combinations of double or larger sized voltage jumps
that cannot be captured by an analysis of just pairs of
presynaptic neurons firing synchronously. Although it
may naively appear that we need to represent third or
higher order statistics to capture such firing patterns,
one can still infer the presence of higher order firing
patterns from second order statistics.

Imagine, for example, that a presynaptic population
contained three neurons with identical firing rates and
pairwise correlation, as assumed by our kinetic theory.
If the correlation between each pair was high, then it
would be highly likely that each pair was either silent
or firing together (recall, we are ignoring delayed corre-
lation). Since in this extreme case, it would be unlikely
to find a pair where one neuron is firing and another is
silent, we immediately observe that it would be rare to
have only one out of the three neurons fire or have two
of the three neurons fire without the remaining neuron
joining in the firing. The likely states would be that
either all three neurons are silent or all three neurons
are firing together.

This extreme example illustrates some of the im-
plications of second order statistics on the likelihood
of observing higher order firing patterns. We did not
need to assume anything special about the third order
statistics to infer the likelihood of third order firing
patterns. The likelihood of triplet firing was simply a
consequence of the large pairwise correlation. In less
extreme cases with lower pairwise correlation and more
neurons, there is a lot more flexibility of what higher or-
der statistics could correspond prescribed second order
statistics. However, if one does not want to prescribe

additional structure on the higher order statistics, one
can infer predictions about higher order statistics by
assuming minimal structure using maximum entropy
estimates of the higher order statistics (Jaynes 1957).
Such methods were behind efforts to determine if one
needed to assume higher order structure in neuronal
activity in order to predict firing patterns among simul-
taneously recorded neurons (Schneidman et al. 2006;
Shlens et al. 2006; Tang et al. 2008; Yu et al. 2008).
For point processes such as the firing of neurons, such
calculations would be based on the entropy rates of
point processes (McFadden 1965). For example, one
could approximate the rates at which three or more
neurons fire synchronously as those rates that maximize
the entropy rate of the joint firing of those neurons.

The implications of second order statistics on higher
order statistics becomes an important consideration for
designing our second order kinetic theory approach. As
pairwise correlations increase, so does the likelihood
that more than two presynaptic neurons may fire simul-
taneously. In this case, not only do the double jumps
described above become prevalent, but also triple and
larger jumps start to have an effect. Hence, another way
to improve the kinetic theory performance under high
correlation is to use maximum entropy rate methods to
estimate the rate of synchronous firing by more than
two neurons from the quantities rave(t) and r̃syn(t) and
include the effect of such events in the evolution of the
postsynaptic populations.

4.4 Including autocorrelations

In our kinetic theory formulation, we assumed the input
to each neuron was a modulated Poisson process, com-
pletely ignoring any autocorrelations in the input. Such
autocorrelation in the firing times of neurons are clearly
present even in our simplified integrate-and-fire model,
as a neuron needs time to integrate up to threshold after
firing. Moreover, since it is well-known that the output
of neurons is not Poisson (Stevens and Zador 1998;
Shinomoto et al. 2003; Salinas and Sejnowski 2002), it
is clear that our Poisson assumption is unrealistic. We
suspect that such a Poisson assumption has decreased
the accuracy of our kinetic theory approach.

Recent kinetic theory approaches have included au-
tocorrelations of the input using colored noise (Câteau
and Reyes 2006; Doiron et al. 2006) or a renewal
process description (Ly and Tranchina 2008). We could
incorporate such autocorrelations along with the cross-
correlations. Including such autocorrelations would
require the addition of two more variables to our
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population density (for example, the times since neu-
ron 1 and neuron 2 received their last inputs). Those
same variables could also be used to include cross-
correlations at non-zero delays, leading to a more
complete description of the second order statistics in
the neuronal activity in terms of correlated renewal
processes. Hence, this extension may reduce the over-
estimate of correlation that we currently observe from
our method of collapsing delayed correlation to make
it instantaneous. Unfortunately, simulating the evolu-
tion of a four-dimensional population density function
would be computationally expensive. To make their
numerical solution more tractable, we would need to
search for techniques to reduce the dimension, search-
ing along the lines, for example, of a rescaling technique
used to approximate a colored noise process by a white
noise process (Moreno et al. 2002).

4.5 Fast numerical methods

The focus of this work has been to explore how well one
could capture the emergence and propagation of corre-
lation with a kinetic theory description that represents
some of the second order statistics of neuronal activity
and connectivity patterns. At this point, we have not
developed a fast numerical method to quickly solve the
equations (2). Fortunately, a wide range of techniques
have been developed for efficient numerical solution of
such equations.

One promising option to speed up the computations
is recently developed dynamic basis set techniques for
efficient simulation of this class of problems (Knight
2000; Mattia and Del Giudice 2002). This method relies
on the observation that the state of a system such
as ρ(v1, v2, t) is typically concentrated in a relatively
small subspace. One constructs a dynamic basis set of
eigenfunctions and can reduce computational complex-
ity by tracking only a small number of eigenmodes.
Such an approach has been successfully used with
two-dimensional integrate-and-fire models (Apfaltrer
et al. 2006), and may be a good method to speed up
the higher-dimensional densities involving correlations.
Operator splitting is another technique to speed up sim-
ulations (Apfaltrer et al. 2006) that could be employed
with our model.

Another way to speed up the solution of Eq. (2) is
to turn the integro-differential equation into a diffusion
equation under the assumption that the jump size A is
small. The partial differential equation can be solved
more quickly because one obtains a sparser matrix
when discretizing the derivatives with respect voltage.
However, the diffusion approximation loses accuracy

as the jump size becomes large. For this reason, the
diffusion approximation may be inaccurate when the
correlation is high and double-sized (or larger) voltage
jumps become common. We plan to investigate the
ability of the diffusion approximation to capture highly
correlated activity in the future.

4.6 A tool to analyze network behavior
and connectivity

Our goal for this second order kinetic theory approach
is a tool with which to investigate the consequences of
network structure on network behavior. We are aiming
for a method that one can use to distill the connec-
tivity down to its key features and to study how these
features influence the network behavior. Although the
development of the tool is still in its early stages (we
haven’t yet addressed recurrent connections within a
population), it has shown promise that it can capture
basic aspects of the behavior of second order statistics
in feed-forward networks. If one could parameterize
network connectivity by second order statistics and use
the kinetic theory tool to explore their consequences
on second order statistics of neuronal activity, this
simplified description may help uncover key network
parameters underlying network behaviors.

Already at these initial stages, we have gained some
insight into the network parameters that underlie the
build-up of correlations. Previous studies (Doiron et al.
2006) have concluded that network size may be the
critical factor in determining this behavior. Our ki-
netic theory analysis suggested that it was the fraction
of shared input parameter rather than network size
that played the key role. Simulations of networks with
different higher order connectivity statistics provided
convincing evidence supporting the kinetic theory
prediction.

To implement the kinetic theory analysis, one needs
methods to determine the second order connectivity
patterns at the level of a population coarse-graining.
One would like to know what classes of neurons project
onto a neuron of a given class (our first order statistic
W1) and what classes of neurons project common input
connections onto pairs of neurons of a given class (our
second order statistic W2 = βW1). One of us has re-
cently developed a connectivity analysis (Nykamp 2005,
2007a, b) that contains ambiguity that could be at the
same level as the population grouping. Although this
connectivity analysis is designed to distinguish common
input (even originating from unmeasured neurons)
from causal connections among a set of measured neu-
rons, more work needs to be done to identify the classes



364 J Comput Neurosci (2009) 26:339–368

of the common input neurons. With that extension, the
connectivity analysis may be one way to determine the
second order statistics of the connectivity needed for
the kinetic theory analysis. A tool to estimate second
order connectivity and a tool to explore the conse-
quences of second order connectivity could prove a
powerful combination for probing basic properties of
neural circuits and exploring the link between connec-
tivity patterns and network behavior.

Acknowledgements This work was supported in part by NSF
grant DMS 0719724 (DQN) and NIH training grant R90
DK71500 (CYL). We thank Dan Tranchina, Brent Doiron,
Michael Buice, Carson Chow, and Hide Câteau for helpful dis-
cussions.

Appendices

A Method for solving the kinetic theory equations

The first step in solving the kinetic theory equations
(2) is to rewrite them in conservative form, i.e., diver-
gence form ∂ρ

∂t = −∇ · J, where J is a flux density. The
terms describing the advection due to the leak current
are already the divergence of a flux density. We need
to rewrite the integrals corresponding to the voltage
jumps in response to excitatory input. Recall that FA(x)

is the complementary cumulative distribution function
and fA(x) is the probability density of the random jump
size A, so that ∂ FA

∂x = − fA(x). Applying this identity
and the fundamental theorem of calculus, we obtain
the following equalities. We rewrite the terms due to
independent input as

∫ v1

vreset

fA(v1 − θ1)ρ(θ1, v2, t)dθ1 − ρ(v1, v2, t)

= − ∂

∂v1

∫ v1

vreset

FA(v1 − θ1)ρ(θ1, v2, t)dθ1,

∫ v2

vreset

fA(v2 − θ1)ρ(v1, θ2, t)dθ2 − ρ(v1, v2, t)

= − ∂

∂v2

∫ v2

vreset

FA(v2 − θ2)ρ(v1, θ2, t)dθ2, (15)

The integrals involving FA are probability flux densities
analogous to those defined in Nykamp and Tranchina
(2000).

The jumps due to synchronous input are a little more
complicated. There are many ways to write them in con-
servative form. Since the evolution of ρ is symmetric in
v1 and v2, we kept the equation symmetric by dividing

the diagonal jumps into a symmetric pair of horizontal
and vertical jumps.

∫ v1

vreset

∫ v2

vreset

fA(v1 − θ1) fA(v2 − θ2)ρ(θ1, θ2, t)dθ1dθ2

− ρ(v1, v2, t)

= −1

2

∂

∂v1

(∫ v1

vreset

FA(v1 − θ1)ρ(θ1, v2, t)dθ1

+
∫ v1

vreset

∫ v2

vreset

FA(v1 − θ1) fA(v2 − θ2)

× ρ(θ1, θ2, t)dθ2dθ1

)

− 1

2

∂

∂v2

(∫ v2

vreset

FA(v2 − θ2)ρ(v1, θ2, t)dθ2

+
∫ v2

vreset

∫ v1

vreset

FA(v2 − θ2) fA(v1 − θ1)

× ρ(θ1, θ2, t)dθ1dθ2

)
. (16)

Although these integrals do not correspond to physical
horizontal and vertical jumping of the voltage, we view
their formulation simply as an intermediate step to
developing a numerical scheme to solve the original
Eq. (2).

As a result, we obtain the following integro-
differential equation:

∂ρ

∂t
(v1, v2, t)=−∇ · J(v1, v2, t)+δ(v1−vreset)Jreset,1(v2, t)

+ δ(v2−vreset)Jreset,2(v1, t)

+ δ(v1 − vreset)δ(v2 − vreset)Jreset,3(t),(17)

where

J(v1,v2,t)=Jleak(v1,v2,t)+Jind(v1, v2, t)+Jsyn(v1,v2,t),

Jleak = (J1
leak, J2

leak), Jind =(J1
ind, J2

ind),

Jsyn = (J1
syn, J2

syn),

J1
leak(v1, v2, t)=−v1 − Er

τ
ρ(v1, v2, t),

J1
ind(v1,v2,t)=νind(t)

∫ v1

vreset

FA(v1 − θ1)ρ(θ1, v2, t)dθ1,

J1
syn(v1,v2,t)= 1

2
νsyn(t)

(∫ v1

vreset

FA(v1 − θ1)ρ(θ1, v2, t)dθ1

+
∫ v1

vreset

∫ v2

vreset

FA(v1−θ1)fA(v2−θ2)

×ρ(θ1, θ2, t)dθ2dθ1

)
, (18)
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All second components are analogous by symmetry.
The reset terms are defined in Eq. (3).

We do not have local conservative equality between
the flux density across the threshold (J1

ind(vth, v2, t) +
J1

syn(vth, v2, t)) and the reset Jreset,1(v2, t). Due to our
definition of the flux density J1

syn(vth, v2, t), it includes
the effect of synchronous inputs where the voltage of
neuron 2 jumps from v2 to higher voltages (and hence
appears in the reset term Jreset,1(v2, t) at those higher
voltage or even in Jreset,3(t) if neuron 2 also crossed
threshold). Nonetheless, one can verify that the system
is globally conservative because the total flux across
threshold equals the total reset:

∫ vth

vreset

(J1
ind(vth, v2, t) + J1

syn(vth, v2, t))dv2

+
∫ vth

vreset

(J2
ind(v1, vth, t) + J2

syn(v1, vth, t))dv1

=
∫ vth

vreset

Jreset,1(v2, t)dv2 +
∫ vth

vreset

Jreset,2(v1, t)dv1

+ Jreset,3(t) (19)

To numerically solve the equations, we used the
finite volume approach. We discretized the domain
[0, vth] × [0, vth] in (v1, v2) space into squares of size

v × 
v with 
v = 0.0125. We let v1, j = v2, j = ( j −
1/2)
v so that the point (v1, j, v2,k) is the center of
square ( j, k). Each point ρ j,k(t) represented the integral
of ρ(v1, v2, t) over the square ( j, k). The divergence
∇ · J at the center of each square was approximated by
differences in the integral of the flux along the bound-
ary of the square, and we approximated the resulting
integrals along each line segment with the midpoint
rule. We linearly interpolated ρ j,k to estimate its value
along the boundary for Jleak. To estimate the value of
the integrals for Jind and Jsyn, we used Simpson’s rule.

We reduced the dimension of the system of equa-
tions by exploiting the symmetry ρ j,k = ρk, j. We dis-
cretized in time using the trapezoid method with 
t =
0.5 ms. At each time step, we solved the system of linear
equations using GMRES (Saad and Schultz 1986). In
this way, we used a numerical method that is second
order accurate in both time and space.

Since we set vreset < Er, the advection flux Jleak is
non-zero along locations of voltage reset, preventing
the Jreset,1 and Jreset,2 delta-function source terms from
forming a delta-function in ρ(v1, v2, t). However, the
double delta-function source due to the reset Jreset,3 will
form a delta-function component of ρ. The flux Jreset,3

represents a finite probability per unit time that both
neurons reset to (vreset, vreset). At that point, the voltage

pair will advect along the line {(v1, v2)|v1 =v2, 0<v1 <

Er} until either neuron receives an input. Hence, there
will be finite probability that the voltages of a neuron
pair reside along this line. The delta-function in ρ

along this line will prevent second order convergence
of the above numerical method if we apply it directly
to Eq. (17). To ensure convergence, we divide ρ into
two components, a smooth component ρs and a delta
function component along the diagonal with weight
function ρδ :

ρ(v1, v2, t) = ρs(v1, v2, t) + δ(v1 − v2)ρδ(v1) (20)

Plugging this expression into the original evolution
Eq. (17) and then grouping the delta-function terms
will result in coupled evolution equations for ρs and ρδ .
Since ρs and ρδ are smooth, we can solve the resulting
equations using our numerical scheme and achieve sec-
ond order accuracy.

B Calculating connectivity statistics for different
network classes

We calculate the expected number of inputs W1 and the
fraction of shared inputs β for networks with arbitrary
outgoing degree distributions and incoming connec-
tions determined randomly. We examine the connec-
tivity from a presynaptic population 1 with N1 neurons
onto a postsynaptic population 2 with N2 neurons.

Let Ŵij = 1 if there is a connection from neuron j in
population 1 onto neuron i in population 2; otherwise,
let Ŵij = 0. Let d j = ∑N2

i=1 Ŵij be outgoing degree of
neuron j in population 1, i.e., the number of connec-
tions from neuron j onto all neurons in population 2.
Let the function f (k) be the outgoing degree distribu-
tion so that

Pr(d j = k) = f (k)

for k = 1, 2, . . . , N2. The expected total number of
connections (out of N1 N2 possible) is N1

∑N2
k=1 kf (k)

so that the expected number of connections onto any
neuron in population 2 is

W1 = N1

N2

N2∑

k=1

kf (k). (21)

If f (k) was given by a one-parameter family of distrib-
utions, prescribing W1 would determine the particular
distribution as a function of population sizes N1 and
N2.
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Neuron j in population 1 has d j connections onto
neurons in population 2, which we assume are assigned
randomly to neurons in population 2. Then, condi-
tioned on this value of d j, the probability of a connec-
tion from neuron j onto any given pair (indexed by i1

and i2) of neurons in population 2 is

Pr(Ŵi1 j = 1 & Ŵi2 j = 1 | d j) =
(N2−2

d j−2

)

(N2

d j

) = d j(d j − 1)

N2(N2 − 1)

Multiplying by the probability distribution of d j (i.e.,
the outgoing degree distribution) and summing over all
possible values of d j, we determine that the probability
a given neuron j in population 1 is connected to a given
pair of neurons in population 2 is

N2∑

k=1

Pr(Ŵi1 j = 1 & Ŵi2 j = 1 | d j = k) Pr(d j = k)

=
N2∑

k=1

k(k − 1)

N2(N2 − 1)
f (k).

To calculate W2, the total expected number of shared
inputs from all N1 neurons, we simply need to multiply
by N1:

W2 =
N2∑

k=1

N1k(k − 1)

N2(N2 − 1)
f (k).

Dividing by W1 Eq. (21) gives the fraction of shared
input parameter β in terms of the degree distribution

β =
∑N2

k=1 k(k − 1) f (k)

(N2 − 1)
∑N2

k=1 kf (k)
. (22)

For a random network, the degree distribution is a
binomial distribution

f (k) =
(

N2

k

)
pk(1 − p)N2−k

so that

W1 = N1 p and β = p, (23)

agreeing with the results from Section 3.2.2. If the de-
gree distribution is given by a power law with maximum
degree dmax ≤ N2

f (k) =
{

k−γ /
∑dmax

n=1 n−γ if k ≤ dmax,

0 otherwise,

the expressions for W1 and β become

W1 = N1
∑dmax

k=1 k1−γ

N2
∑dmax

k=1 k−γ
and

β =
∑dmax

k=1 (k − 1)k1−γ

(N2 − 1)
∑dmax

k=1 k1−γ
. (24)

If the degree distribution is given by a Gaussian

f (k) = e−k2/2σ 2

∑N2
n=1 e−n2/2σ 2

the expressions for W1 and β become

W1 = N1
∑N2

k=1 ke−k2/2σ 2

N2
∑N2

k=1 e−k2/2σ 2
and

β =
∑N2

k=1 k(k − 1)e−k2/2σ 2

(N2 − 1)
∑N2

k=1 ke−k2/2σ 2
. (25)

In our simulations, we set N1 = N2 = N and solved
the first equation of Eq. (23), Eq. (24) or Eq. (25) for
the p, γ or σ , respectively that gave the chosen W1.
Then,we used the second equation of Eq. (23), Eq. (24)
or Eq. (25) to calculate β.
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