
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c© 2007 Society for Industrial and Applied Mathematics
Vol. 68, No. 2, pp. 354–391

EXPLOITING HISTORY-DEPENDENT EFFECTS TO INFER
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Abstract. We present an approach to distinguish between causal connections and common
input connections among nodes in a network. By modeling how the activity of a node depends
on its own recent history, we demonstrate how this history dependence predicts different patterns
of activity depending on the nature of the network connectivity. In particular, a causal connection
between a pair of observed nodes can be distinguished from common input connections that originate
from nodes whose activity remains unobserved. This work builds on previous results where this same
distinction was made based on modeling how the activity of a node depends on measured external
variables such as stimuli. The results have a potentially broad range of application as the analysis
can be based on a fairly generic class of models.
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1. Introduction. The determination of causal connections among nodes within
a network is a difficult challenge. This challenge is magnified in the presence of hidden
nodes, the effects of which can mimic the presence of causal connections among the
set of measured nodes. For example, the connection from a hidden node onto two
measured nodes could introduce correlations in the activity of the measured nodes that
resemble the effect of a causal connection between the measured nodes (see Figure 1).

We have recently introduced [14, 13, 12] an approach for identifying causal con-
nections in the presence of hidden nodes that is based on modeling the relationship
between the activity of nodes and measurable external variables, such as those rep-
resenting a stimulus. In the original formulation of this approach, the activity of
any node could be only weakly dependent on the history of its activity. However, in
general, the activity of a node could depend strongly on the recent activity of that
node. For example, this approach was originally designed for neuronal networks, and
the spiking activity of a neuron is strongly modulated by that neuron’s spike history.
After firing a spike, a neuron cannot immediately fire a second spike due to its refrac-
tory period. Some neurons tend to fire spikes in bursts so that, once the refractory
period is over, the probability of firing a spike is transiently much higher than baseline.
These history-dependent effects were neglected in our original formulation.

We have now discovered that, if one models how the activity of a node depends
on its recent history, one’s ability to distinguish causal connections within a network
is enhanced. The reason that modeling history dependence can help determine causal
connections is caricatured in Figure 2. For the purpose of illustration, imagine that
the nodes are neurons and that the measured activity is the times of the neurons’
output spikes. Moreover, imagine that neuron 1 tends to fire spikes in pairs (note the
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Fig. 1. The effect of hidden nodes (unfilled circle) can be to mimic causal connections among
measured nodes (filled circles). (A) A causal connection from measured node 1 onto measured node 2.
(B) A common connection from a hidden node onto two measured nodes, where the connection onto
measured node 2 has a longer delay. (C) Both the common input configuration (A) and the causal
connection configuration (B) produce similar correlations in the activity of the measured nodes. For
concreteness, let the nodes be neurons whose activity is a sequence of spike times illustrated by the
temporal sequence of rectangles. Both the networks (A and B) will increase the probability that
neuron 2 will fire a spike immediately after neuron 1. (These spike combinations are highlighted by
the unfilled rectangles.) (D) Schematic of the correlation induced by either network (A or B). Neuron
2 is highly likely to fire a spike a certain delay after neuron 1 fires. There is a peak in the correlation
measured at that delay. (We arbitrarily use a negative delay when neuron 2 follows neuron 1.) Since
both the common input (A) and the causal connection (B) configurations induce similar correlations
in the activity of the measured nodes, our goal is to distinguish which configuration underlies the
measured activity of the two nodes.

pairs of closely spaced spikes in the output of neuron 1 in the right panels of Figure
2). We argue that neuron 2 should respond differently to the spike pairs depending
on whether the network contains a causal connection (Figure 2(A)) or common input
connections (Figure 2(B)).

To further simplify the situation, imagine that the spike trains of neither neuron
2 nor the hidden neuron have a significant dependence on their history. Then, as
portrayed in Figure 2(A), if neuron 1 has a causal connection onto neuron 2, neuron
2 will respond equally well to both spikes in the spike pairs emitted by neuron 1.
Neuron 2 will receive both spikes in the pair as inputs, so neuron 2 will be likely to
fire a spike immediately after both of these inputs. On the other hand, in the common
input configuration of Figure 2(B), neuron 2 does not receive neuron 1’s spike pairs
as inputs. When the hidden neuron fires a single spike, it may elicit a spike pair from
neuron 1. However, neuron 2 just receives the single input from the hidden neuron,
so neuron 2 will not be driven to fire twice. When looking at just the spike trains
of neuron 1 and 2, it may appear, for example, that neuron 2 is responding to just
the first spike of each pair from neuron 1 and ignoring the second spike. The key
intuition to gain from this example is that, for the common input configuration, it
looks as though neuron 2 does not respond to spikes that can be predicted by the
history dependence of neuron 1.

Of course, any real situation will be far more complicated than this exagger-
ated example. For instance, all of the nodes could have a strong history dependence
to their activity, which will confound the simple reasoning given above. Moreover,
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Fig. 2. Illustration of the different effects of history dependence based on the underlying cir-
cuitry. Nodes are spiking neurons as in Figure 1. For this illustration, we assume neuron 1’s activity
is strongly dependent on its spiking history; it is highly likely to fire spikes in pairs. We also assume
that the spikes of neuron 2 and the unmeasured neuron are largely independent of their respective
history. (A) In a causal connection configuration, neuron 2 may respond to all of neuron 1’s spikes.
As schematized on the left, when neuron 1 fires a pair of spikes (black rectangles), neuron 2 is
likely to spike after each one and so may spike twice. The right panel illustrates a possible temporal
sequence of spikes from both neurons. Spike combinations where neuron 2 fires immediately after
neuron 1 are highlighted by unfilled rectangles. Neuron 2 is highly likely to spike both after the first
spike and after the second spike in each spike pair from neuron 1. (B). In a common input configu-
ration, neuron 2 does not receive the spike pairs from neuron 1. Since a single spike from the hidden
neuron can evoke the spike pair from neuron 1, neuron 2 receives only one input that is correlated
with the spike pair from neuron 1. If the connection from the hidden neuron onto neuron 2 has a
slightly longer delay than the connection onto neuron 1, neuron 2 will be likely to fire immediately
after the first spike in each pair from neuron 1. It will not be likely to spike after the second spike
of the pair, as illustrated in the right panel.

the influence of the connections between a pair of nodes will typically be weaker
than illustrated here, as input received via any one connection will be just one small
influence on a node bathed with inputs from other nodes in the network. Hence,
exploiting such history-dependent effects to infer connectivity requires some form of
analysis that can synthesize the various ways in which internode connectivity and in-
tranode history-dependent effects interact to influence nodes’ activities. Nonetheless,
the mathematical analysis we present will confirm that intuition gleaned from this
exaggerated example does apply to the more complex situation (see section 3.4.1).

This paper presents a mathematical analysis through which one can employ a
model of history-dependent effects to develop estimates of the network connectiv-
ity among measured nodes. In section 2, we describe the class of models that we
consider. In section 3, we present the analysis to determine the connectivity. We
demonstrate the results applied to simulated networks in section 4 and discuss the
results in section 5.

2. The history-dependent model. We present our model and analysis in
fairly abstract terms. As detailed in [14], we employ a modular approach where
the details of the single-node model are ignored in the network analysis. To employ
the results to analyze a particular dataset, one must select an appropriate model, the
form of which can be “plugged into” the network analysis.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXPLOITING HISTORY-DEPENDENT EFFECTS 357

2.1. The general model formulation. The model is formulated in discrete
time. Let Ri

s be a random variable that represents the activity of node s at time
point i. Since our examples will involve models of neurons, we will assume that
Ri

s is a discrete random variable. However, the analysis proceeds analogously for
a continuous random variable. Ignoring the activity of other nodes for a moment,
the probability distribution of Ri

s will depend both on the history of node s and
on some measurable external variables. Let R<i

s be the vector of the history of the
activity of node s (i.e., the vector with values of Rk

s for k < i). Denote the external
variable vector by X. The vector X could represent any quantity or set of quantities
whose values are known and that modulate the activity of the nodes. For example, in
neuroscience applications, X could correspond to a sequence of stimuli or a sequence
of animal positions. (See [14] for a discussion on external variables. Note that X
could depend on time, although the notation does not make that explicit.)

The activity of a given node on the network also depends on activity of other
nodes. We denote the network connectivity by W̄ ı̃,i

s̃,s, which indicates the magnitude

of the effect of the activity of node s̃ at time ı̃ (i.e., Rı̃
s̃) on the activity of node s

at time i (i.e., Ri
s). We assume that all connections are causal so that W̄ ı̃,i

s̃,s = 0 for

ı̃ ≥ i. We model the effect of Rı̃
s̃ on the probability distribution of Ri

s as a function

of the product W̄ ı̃,i
s̃,sR

ı̃
s̃. Moreover, we simply linearly sum the coupling effects from

all nodes and previous time steps, modeling the total coupling effect of all nodes on
the probability distribution of Ri

s as a function of the sum∑
s̃ �=s

∑
ı̃<i

W̄ ı̃,i
s̃,sR

ı̃
s̃.

To summarize, we model the probability distribution of Ri
s as a parametric func-

tion of the history R<i
s of node s, the external variables X, and the past activity of

all nodes as

Pr(Ri
s = ris |R<i = r<i,X = x) = Ps

(
ris, r

<i
s ,x,

∑
s̃ �=s

∑
ı̃<i

W̄ ı̃,i
s̃,sr

ı̃
s̃; θ̄

i
s

)
,(2.1)

where Ps is some discrete probability distribution in its first argument and θ̄is is a
vector of parameters. The quantity R<i (without a subscript) is the history of all
nodes, i.e., has components Rk

s̃ for all s̃ and all k < i. If R represents all of the
activity of all nodes (i.e., has components Rk

s̃ for all s̃ and k), then, by Bayes’ law,
the probability distribution of R, given the value of the external variable vector X, is

Pr(R = r |X = x) =
∏
s

∏
i

Pr(Ri
s = ris |R<i = r<i,X = x)

=
∏
s

∏
i

Ps

(
ris, r

<i
s ,x,

∑
s̃ �=s

∑
ı̃<i

W̄ ı̃,i
s̃,sr

ı̃
s̃; θ̄

i
s

)
.(2.2)

To obtain (2.2), we exploited the fact that nodes influence each other only through
causal connections. Hence, conditioned on the history R<i of the network and the
external variables, the activities Ri

s of nodes in a single time step i are independent.
(In other words, we assume the time bins are small enough so that interactions involve
a delay of at least one time bin.)
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2.2. Assumptions required for analysis. With the exception of the linear
coupling among nodes, (2.2) is a fairly generic description of a network in discrete
time. (Recall that the equations could be trivially modified to allow the activity Ri

s

to be a continuous random variable.) However, to proceed with our analysis we make
a few strong assumptions about the network. These assumptions are similar to those
detailed in [14]. (The biggest difference is that here we make no assumptions about
the dependence of a node on its own history.) For this reason, we present only a
brief discussion of these assumptions here and refer the reader to the more detailed
discussion in the former article.

First, we assume that an algorithm exists to fit the activity of a single node to
the same parametric model with the coupling factors W̄ ı̃,i

s̃,s set to zero. Note that this
particular assumption is only about choice of models; it is not an assumption about
the network activity. We assume that, from measurements of the activity of just a
single node s (i.e., of the vector Rs composed of Ri

s for all i), one has an algorithm
to determine effective parameters θis by fitting the averaged model1

Pr(Rs = rs |X = x) =
∏
i

Ps

(
ris, r

<i
s ,x, 0; θis

)
.(2.3)

Although the activity of all other nodes Rı̃
s̃ is ignored in this fitting procedure,

we view the Ri
s as really generated from the full network via model (2.2). Therefore,

the effective parameters θis do include the averaged effects of the coupling from other
nodes. Our analysis will rely heavily on these effective parameters; hence, the results
depend on having chosen a good model Ps and fitting algorithm so that the averaged
model (2.3) captures key elements of the activity of each node. This assumption puts
stringent limits on the model Ps. For example, one cannot use detailed biophysical
models, as all of the parameters of such models cannot be determined by Rs and X
alone. Neither could one allow the θis to be independent for each time i. (See [14] for
more details.)

Second, we assume that the coupling W̄ ı̃,i
s̃,s is weak so that we can expand the full

model (2.2) in a Taylor series in W̄ ı̃,i
s̃,s and retain terms only through second order.

Since we assume that Ps is C2 in its fourth argument, our analysis will have an
error that is O(W̄ 3). As detailed in [14], the assumption has the following important
consequences: The average coupling strength must scale like 1/N , where N is the
network size; the identity of the nodes that appear in (2.2) must be regarded as
“lumped” models that already incorporate effects of nodes projecting to them; and the
network topology is highly simplified, as the second order Taylor series will represent
combinations of at most two edges of the network graph. If the actual connectivity
is too strong to strictly justify this assumption, the resulting connectivity estimates
may need to be reinterpreted as an effective connectivity (see the discussion in section
5).

Third, once we have calculated θis by fitting the averaged model (2.3), we assume
that the model is constructed so that we can calculate Ps(r

i
s, r

<i
s ,x, w; θis) for any

value of w. This is a strong assumption on the allowed form of the model function
Ps, as the averaged model (2.3) is not based on Ps(r

i
s, r

<i
s ,x, w; θis) for any nonzero

w. This assumption also implies that we can calculate ∂
∂wPs(r

i
s, r

<i
s ,x, w; θis) and

1The probability of the left-hand side of model (2.3) is the marginal distribution of the probability
of the left-hand side of model (2.2), averaged over the activity of all other nodes.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXPLOITING HISTORY-DEPENDENT EFFECTS 359

∂2

∂w2Ps(r
i
s, r

<i
s ,x, w; θis). In fact, this assumption implies that these derivatives must

be equivalent to derivatives with respect to some function of r<i
s , x, and θis.

Last, unless one could repeatedly sample the activity of the nodes from the same
time points, one couldn’t hope to be able to determine arbitrary connectivity W̄ ı̃,i

s̃,s

that varies freely with the time point. (This is the same reason θis cannot be allowed
to vary freely with the time point, as mentioned above.) When we actually implement

the approach, we will eventually (see section 3.3.3) allow W̄ ı̃,i
s̃,s to depend on ı̃ and i

only through the delay i− ı̃. (One could also allow the coupling to adapt slowly with

time.) During most of our analysis, we will keep the notation where W̄ ı̃,i
s̃,s varies freely

with the time point, as it adds no complexity to the equations.

3. The analysis. We begin by giving a short overview of the analysis. We
operate under the assumption that model (2.2) gives the true probability distribution
of the activity R of the entire network. However, we assume that one can observe
just a small number of nodes with indices q in some subset Q. We denote by RQ the
activity of all of these measured nodes. (The components of RQ are a subset of those
of R.)

The first step of the analysis will be to derive an expression for the probability
distribution of the activity of just the measured nodes. We will derive an expression
for this probability, which we denote by Pr(RQ|X), by taking the expression for
Pr(R|X) given in (2.2) and averaging it over the activity of all hidden nodes. This
step will rely heavily on the weak coupling assumption described above.

The resulting expression for Pr(RQ|X) will depend on all of the unknown param-

eters θ̄is and W̄ ı̃,i
s̃,s. Given that many nodes remain hidden, we don’t have any hope

of obtaining estimates of the original parameters θ̄is. However, we do, by assumption,
have an algorithm for determining the effective parameters θiq of any measured node
q by fitting the averaged model (2.3) to the activity of that measured node. To take
advantage of this information, our second step will be to derive an expression for the
original parameters θ̄ in terms of the effective parameters θ.

Our third step is to combine the results of steps one and two to arrive at an
expression for the probability distribution Pr(RQ|X) of the measured node activity
in terms of the effective parameters. With one further approximation, we can group
all of the effects of the hidden nodes into a small number of parameters. In the end,
our expression for Pr(RQ|X) will contain just two sets of unknown parameters: the
effective causal connection parameters (which we’ll denote by an unbarred W ) and the
effective common input parameters (which we’ll denote by U). Given a measurement
of the activity of the measured nodes, we use our expression for Pr(RQ|X) to compute
maximum likelihood estimates of the W and U . The effective causal connection W
will be our estimate of the connectivity among the measured nodes.

3.1. Step one: Average for measured node probability distribution.
Our first step is to average the full model (2.2) over all possible values of the activity
of hidden nodes to obtain an expression for the probability distribution of measured
node activity. Before we compute the average, we use the weak coupling assumption
described in section 2.2 to simplify (2.2).

We invoke the weak coupling assumption to expand the full model (2.2) as a
Taylor series in W̄ . To simplify the presentation, we define the following shorthand
notation for the probability distribution of the activity of node s (over all time points
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i) that would result if all coupling was set to zero:

P̄s =
∏
i

Ps

(
ris, r

<i
s ,x, 0; θ̄is,

)
.(3.1)

Similarly, we define shorthand notation for the derivatives of P̄s with respect to the
rı̃s̃ for s̃ �= s:

∂P̄s

∂rı̃s̃
=

∂

∂rı̃s̃

⎛⎝∏
i

Ps

⎛⎝ris, r
<i
s ,x,

∑
ś �=s

∑
ı́<i

W̄ ı́,i
ś,sr

ı́
ś; θ̄

i
s

⎞⎠⎞⎠∣∣∣∣∣
{rı́ś=0|ś �=s}

,

∂2P̄s

∂rı̃1s̃1∂r
ı̃2
s̃2

=
∂2

∂rı̃1s̃1∂r
ı̃2
s̃2

⎛⎝∏
i

Ps

⎛⎝ris, r
<i
s ,x,

∑
ś �=s

∑
ı́<i

W̄ ı́,i
ś,sr

ı́
ś; θ̄

i
s

⎞⎠⎞⎠∣∣∣∣∣
{rı́ś=0|ś �=s}

.(3.2)

Since the W̄ appear only in the combination W̄ ı̃,i
s̃,sr

ı̃
s̃, we can write our Taylor

series in W̄ as though it were a Taylor series in the rı̃s̃. This notation will turn out to
be more convenient for the analysis because the key factors of rı̃s̃ will be written out
explicitly. Note that, for each node s, we make no assumptions about the effect of its
own history r<i

s and do not expand out this history dependence in a Taylor series.
Using the above shorthand notation, the Taylor series of (2.2) is

Pr(R = r|X = x) =
∏
s

P̄s +
∑
s1,s̃1
s̃1 �=s1

∑
ı̃1

∂P̄s1

∂rı̃1s̃1
rı̃1s̃1

∏
s2

s2 �=s1

P̄s2

+
1

2

∑
s1,s̃1,s̃2

s̃1 �=s1,s̃2 �=s1

∑
ı̃1 ,̃ı2

∂2P̄s1

∂rı̃1s̃1∂r
ı̃2
s̃2

rı̃1s̃1r
ı̃2
s̃2

∏
s2

s2 �=s1

P̄s2

+
1

2

∑
s1,s2,s̃1,s̃2

s2 �=s1,s̃1 �=s1
s̃2 �=s2

∑
ı̃1 ,̃ı2

∂P̄s1

∂rı̃1s̃1

∂P̄s2

∂rı̃2s̃2
rı̃1s̃1r

ı̃2
s̃2

∏
s3

s3 �=s1
s3 �=s2

P̄s3 + O(W̄ 3).(3.3)

Note that the derivative ∂P̄s/∂r
ı̃
s̃ corresponds to the effect of a connection from node

s̃ onto node s. If we wrote out the derivative explicitly, it would contain a sum of
terms involving W̄ ı̃,i

s̃,s for all i > ı̃. It represents the change in the distribution of all

Ri
s for i > ı̃ given a change in Rı̃

s̃ (calculated at Rı̃
s̃ = 0).

We can now write down an expression for the activity of all measured nodes by
averaging over all possible values of the activity of the hidden nodes. As mentioned
above, let Q denote the set of node indices corresponding to all measured nodes.
Similarly, let P denote the set of node indices corresponding to all hidden nodes.
Then Q ∪ P corresponds to the entire network. To simplify the notation, we will
make the following notational conventions. We will use the index s and its variants
to index all nodes in the network; i.e., we implicitly assume that s ∈ Q ∪ P. We
will use the indices p and q (and their variants) to index hidden and measured nodes,
respectively; i.e., we implicitly assume that p ∈ P and q ∈ Q. Last, we let RQ and RP
represent all measured node activity Ri

q and all hidden node activity Ri
p, respectively.
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To derive an expression for the probability distribution of all measured activity,
we average (3.3) over all possible values of RP . The probability distribution of RQ
is therefore

Pr(RQ = rQ|X = x) =
∑
rP

Pr(R = r|X = x)

=
∑
rP

∏
s

P̄s +
∑
rP

∑
s1,s̃1
s̃1 �=s1

∑
ı̃1

∂P̄s1

∂rı̃1s̃1
rı̃1s̃1

∏
s2

s2 �=s1

P̄s2

+
1

2

∑
rP

∑
s1,s̃1,s̃2

s̃1 �=s1,s̃2 �=s1

∑
ı̃1 ,̃ı2

∂2P̄s1

∂rı̃1s̃1∂r
ı̃2
s̃2

rı̃1s̃1r
ı̃2
s̃2

∏
s2

s2 �=s1

P̄s2

+
1

2

∑
rP

∑
s1,s2,s̃1,s̃2

s2 �=s1,s̃1 �=s1
s̃2 �=s2

∑
ı̃1 ,̃ı2

∂P̄s1

∂rı̃1s̃1

∂P̄s2

∂rı̃2s̃2
rı̃1s̃1r

ı̃2
s̃2

∏
s3

s3 �=s1
s3 �=s2

P̄s3 + O(W̄ 3),(3.4)

where the sum over rP indicates a sum over all possible values of the hidden node
activity.

It turns out that we can explicitly compute the sum over rP . Note that the value
ris of a given random variable can appear in (3.4) either explicitly or in the probability
distribution P̄s (or its derivatives). It is not hidden in any other factors. Therefore, to
compute a sum over all possible values of the activity of a node indexed by some s, we
can factor out everything except one factor of P̄s (or a derivative of P̄s) and a polyno-
mial in the ris. Hence, we need to derive expressions for the average of such quantities.

The average of a polynomial in the ris multiplied by the undifferentiated P̄s will
simply be the expected value of that polynomial, under the probability distribution
P̄s with the W argument set to zero. Taking the average of expressions involving the
derivatives of P̄s is more complicated. In Appendix A.1, we outline how to compute
such averages. The important point is that one can compute these averages explicitly
in terms of the model parameters and the probability distributions Ps(·). We end up
with the lengthy expression for Pr(RQ|X) given by (A.5).

3.2. Step two: Original parameters in terms of effective parameters.
One of the assumptions given in section 2.2 is the existence of an algorithm to calculate
the effective parameters θis by fitting the averaged model (2.3) to the activity of node
s (while ignoring the activity of all other nodes). Hence, we can regard the effective
parameters θiq as known for all measured nodes q ∈ Q. In the previous step, we
obtained an expression for the probability distribution of the measured node activity
Pr(RQ|X) in terms of the unknown original model parameters θ̄is. In this second step
of the analysis, we will derive a relationship between the effective parameters θis and
the original paramters θ̄is. This relationship will allow us to rewrite our equation for
Pr(RQ|X) in terms of the effective parameters.

We define equivalent shorthand notation for expressions involving the effective
parameters as we did for expressions involving the original model parameters. We
define Ps to be the probability distribution that we fit from the averaged model (2.3):

Ps =
∏
i

Ps

(
ris, r

<i
s ,x, 0; θis,

)
= Pr(Rs = rs |X = x).(3.5)
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We then define the derivatives Ps just as we did for P̄s:

∂Ps

∂rı̃s̃
=

∂

∂rı̃s̃

⎛⎝∏
i

Ps

⎛⎝ris, r
<i
s ,x,

∑
ś �=s

∑
ı́<i

W̄ ı́,i
ś,sr

ı́
ś; θ

i
s

⎞⎠⎞⎠∣∣∣∣∣
{rı́ś=0|ś �=s}

(3.6)

and analogously for the second derivatives. We also define the expected values:

E0(g(R)) =
∑
r

g(r)
∏
s

Ps,(3.7a)

E0

(
∂Ri

s

∂Rı̃
s̃

)
=

∂

∂rı̃s̃
E(Ri

s|R<i = r<i)

∣∣∣∣
{rś=0|ś �=s}

=
∑
rs

ris
∂Ps

∂rı̃s̃
.(3.7b)

These expected values are analogous to the barred versions given in Appendix A.1
((A.2) and (A.4)) except that they are based on the averaged model (2.3). We assume
that the chosen model and fitting algorithm for θis results in the averaged model (2.3)
being a good approximation. Then (3.7a) does indeed represent the expected value of
any function for the activity. For example, E0(R

i
s) is the expected value of the activity

of node s at time i. We will also use the statistic E0(R
i1
s Ri2

s )−E0(R
i1
s )E0(R

i2
s ), which

represents the covariance of the activity of node s at the times i1 and i2.
The derivative of (3.7b) represents how the average activity of node s at time i

changes with the activity of node s̃ at time ı̃. (Since we assume causal connections,
this is nonzero only if ı̃ < i.) See Appendix A.1 for further discussion on the properties
of such derivatives.

Although we know the effective parameters only for measured nodes, we can still
define the (unknown) effective parameters for hidden nodes using the averaged model
(2.3). Using effective parameters for all nodes will simplify the form of our equation
for Pr(RQ|X).

It turns out that we have already done much of the work toward deriving an
equation for effective parameters in step one, above. In that first step, we derived an
expression for Pr(RQ|X), which is the marginal distribution (of the full distribution
Pr(R|X) given by model (2.2)) for the activity of a set of measured nodes. The
averaged model (2.3) is based on Pr(Rs|X), which we can regard as the marginal
distribution for the activity of a single node. If we replace the set Q of measured nodes
in (A.5) with just the single node s, then (A.5) becomes the marginal distribution
for the activity of a single node. In this way, we obtain an expression for Pr(Rs|X)
in terms of the original model parameters. Given the definition (2.3) of the effective
parameters, we have obtained an expression for the effective parameters θ in terms of
the original model parameters θ̄.

However, we need to go the other direction: to transform expressions involving
the original model parameters θ̄ in terms of the effective parameters θ. Using the pro-
cedure outlined in Appendix A.2, we can solve for the original uncoupled probability
P̄s (which is a function of the θ̄is) in terms of the effective probability Ps (which is a
function of the θis). We obtain the following relationship:

P̄s = Ps −
∑
s̃1

s̃1 �=s

∑
ı̃1

∂Ps

∂rı̃1s̃1
E0(R

ı̃1
s̃1

)

− 1

2

∑
s̃1

s̃1 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1s̃1∂r
ı̃2
s̃1

[E0(R
ı̃1
s̃1
Rı̃2

s̃1
) − E0(R

ı̃1
s̃1

)E0(R
ı̃2
s̃1

)]
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−
∑
s̃1

s̃1 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1s̃1
E0

(
∂Rı̃1

s̃1

∂Rı̃2
s

)
[rı̃2s − E0(R

ı̃2
s )]

+
1

2

∑
s̃1,s̃2

s̃1 �=s,s̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1s̃1∂r
ı̃2
s̃2

E0(R
ı̃1
s̃1

)E0(R
ı̃2
s̃2

) + O(W̄ 3).(3.8)

Each term on the right-hand side of (3.8) has a significant meaning and illustrates the
process of approximating a full network (2.2) by an averaged model (2.3). The sum on
the first line is simply the change in the probability distribution of node s caused by
the average effect of connections from other nodes s̃1. Intuitively, this change is the
average activity of node s̃1 times the effect of node s̃1 on the probability distribution
of node s (i.e., the derivative of Ps). Since the effective distribution Ps includes the
average influence of connections from other nodes, this term must be subtracted from
Ps to regain the original uncoupled distribution P̄s.

The term from the second line accounts for second-order effects from a connection
from node s̃1. First consider the case where ı̃1 = ı̃2. Now imagine that the effect of the
connection from node s̃1 onto node s lasts multiple time steps.2 Then the connection
from node s̃1 will introduce correlations in the activity of node s. (Recall how common
input from a node onto two different nodes can introduce correlations between those
two nodes. The effect of the second line of (3.8) is identical except that in this case
we have “common input” onto the same node but at different times, which creates
correlations within that one node’s activity.) This correlation will be proportional to
the variance of Rı̃1

s̃1
.

The case with ı̃1 �= ı̃2 is similar. If Rı̃1
s̃1

is correlated with Rı̃2
s̃1

(due to the history
dependence of the activity of node s̃1), then the combined effect of the activity of
node s̃1 at times ı̃1 and ı̃2 will induce correlations in the activity of node s. This
correlation will be proportional to the covariance of Rı̃1

s̃1
and Rı̃2

s̃1
.

The reason this source of correlation must be subtracted from Ps in the second
line of (3.8) is as follows. When fitting the averaged model (2.3) for node s, one
is averaging over the activity of all other nodes, including node s̃1. The induced
correlations due to the connection from node s̃1 will still be present in the activity
of node s. Hence, the averaged model Ps (and its parameters θs) will take into
account this additional correlation, and the additional correlation will appear in the
averaged model as part of the history dependence of node s. However, the original
uncoupled model represented by P̄s (and its parameters θ̄s) will not include effects
due to coupling from other nodes. This history dependence of P̄s would not include
these additional correlations due to the connection from node s̃1. Hence, the effect of
these correlations must be subtracted from the effective distribution Ps to regain the
original distribution P̄s, as is done in the second line of (3.8).

The term from the third line of (3.8) is similar in that it accounts for additional
correlations in the activity of node s due to connections involving other nodes. In
this case, the correlations are induced by indirect connections from node s onto itself
via one of the other nodes s̃1. This effect has three components as shown by the
three factors. The right factor is the deviation of the activity of node s at time ı̃2

2Since Ps, as defined in (3.5), models the activity of node s for all time steps, the derivative

∂2Ps/(∂r
ı̃1
s̃1

)2 includes the effects of Rı̃1
s̃1

on the activity of node s at all times. In particular, this
derivative captures how the activity of node s̃1 at a single time point ı̃1 can influence the activity of
node s at two different times, thus causing correlations in the activity of node s at those two times.
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from its expected activity as predicted by the averaged model (2.3). The middle
factor is the effect of the activity of node s at time ı̃2 on the activity of node s̃1

at time ı̃1. The left factor is the effect of the activity of node s̃1 at time ı̃1 on the
probability distribution of node s. The resulting correlation in the activity of node
s from this chain of connection would be included in the history dependence of the
effective distribution Ps. But, since these correlations depend on connections, their
effect would not be included in the original uncoupled distribution P̄s. Hence, their
effect must be subtracted from Ps to regain the original distribution P̄s.

The sum from the last line of (3.8) is simply a second-order effect of single con-
nections onto node s. Equation (3.8) is accurate up to second order in W̄ . The sum of
the first line is only a first-order approximation of the change in Ps due to the average
effect of connections from other nodes. The addition of the last line gives the correct
second-order approximation.

3.3. Step three: Measured node distribution in terms of effective pa-
rameters. Our third step is to derive an expression for the probability distribution
Pr(RQ|X) of the measured node activity in terms of the effective parameters θis.
Once we have written down an initial form of this distribution, we can simplify it by
grouping the effects of hidden nodes into two sets of parameters: an effective causal
connection W and an effective common input U . Then, by making one further as-
sumption, we can sufficiently reduce the degrees of freedom within W and U so that
computing their solution becomes tractable.

3.3.1. The initial form of the measured node probability distribution.
In the first step of our analysis, we obtained a lengthy expression for Pr(RQ|X),
the probability distribution of the measured node activity. (It is given by (A.5) in
Appendix A.1.) However, this expression is in terms of the original model parameters
θ̄is which remain unknown. As outlined in Appendix A.3, we rewrite this expression in
terms of the effective parameters. Appendix A.4 describes how we transform the result
into the form of a true probability (which we need since we wish to use it to develop
maximum likelihood estimates of network parameters). We show in Appendix A.4
that this step requires one small deviation from a true second-order approximation,
so we will use the ≈ symbol in our result. We also use the shorthand notation3

P i
s = Ps

(
ris, r

<i
s ,x, 0; θis

)
,

∂P i
s

∂w
=

∂

∂w
Ps

(
ris, r

<i
s ,x, w; θis

)∣∣∣
w=0

.(3.9)

In the end, we obtain the following expression for the probability distribution of
the measured nodes’ activity:

Pr(RQ = rQ|X = x) ≈
∏
q

∏
i

Pq

(
riq, r

<i
q ,x, W̃ i

q ; θ
i
q

)
+ O(W̄ 3),(3.10a)

3Note the subtle difference between the new notation P i
s and ∂P i

s/∂w (defined by (3.9)) on
one hand and the similar notation Ps and ∂Ps/∂rı̃s̃ (defined by (3.5) and (3.6)) on the other hand.
One key difference is that the new notation contains a superscript i, which means it refers to the
distribution of the activity of node s just at time point i.
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where

W̃ i
q =

∑
q̃

q̃ �=q

∑
ı̃1

ı̃1<i

W̄ ı̃1,i
q̃,q [rı̃1q̃ − E0(R

ı̃1
q̃ )]

+
∑
p,q̃
q̃ �=q

∑
ı̃1 ,̃ı2

ı̃2<ı̃1<i

W̄ ı̃1,i
p,q E0

(
∂Rı̃1

p

∂Rı̃2
q̃

)
[rı̃2q̃ − E0(R

ı̃2
q̃ )]

+
∑
p,q̃
q̃ �=q

∑
ı̃1 ,̃ı2 ,̃ı3
ı̃2<ı̃3<i
ı̃1<i

W̄ ı̃1,i
p,q W̄ ı̃2 ,̃ı3

p,q̃

∂P ı̃3
q̃

∂w

1

P ı̃3
q̃

[E0(R
ı̃1
p Rı̃2

p ) − E0(R
ı̃1
p )E0(R

ı̃2
p )]

+
∑
p,q̃
q̃<q

∑
ı̃1 ,̃ı2

ı̃1 ,̃ı2<i

W̄ ı̃1,i
p,q W̄ ı̃2,i

p,q̃

∂P i
q̃

∂w

1

P i
q̃

[E0(R
ı̃1
p Rı̃2

p ) − E0(R
ı̃1
p )E0(R

ı̃2
p )]

−
∑
q̃

q̃ �=q

∑
ı̃1 ,̃ı2 ,̃ı3
ı̃2<ı̃3<i
ı̃1<i

W̄ ı̃1,i
q̃,q W̄ ı̃2 ,̃ı3

q̃,q

∂P ı̃3
q

∂w

1

P ı̃3
q

[E0(R
ı̃1
q̃ Rı̃2

q̃ ) − E0(R
ı̃1
q̃ )E0(R

ı̃2
q̃ )]

−
∑
q̃

q̃ �=q

∑
ı̃1 ,̃ı2

ı̃2<ı̃1<i

W̄ ı̃1,i
q̃,q E0

(
∂Rı̃1

q̃

∂Rı̃2
q

)
[rı̃2q − E0(R

ı̃2
q )].(3.10b)

Though this expression is somewhat lengthy, each line of (3.10b) represents the effect
of a connection or combination of connections on the probability distribution of the
measured nodes’ activity. Just as we did for the single-node results (3.8), we briefly
describe the effects of the connections as embedded in (3.10).

The sum from the first line of (3.10b) represents a direct causal connection from
measured node q̃ onto measured node q. The second line represents an indirect causal
connection from measured node q̃ onto measured node q via a hidden node p. Both
lines describe a change in the distribution of the activity of node q due to a deviation
in the activity of node q̃ from that predicted by the averaged model.

The third and fourth lines are the common input onto measured nodes q and q̃
from a hidden node p. The common input effect is proportional to the (unknown)
(co)variance of the activity of node p (compare to the second line of (3.8)). We
separated out the common input that reaches nodes q and q̃ simultaneously (fourth

line of (3.10b)). We arbitrarily put this common input effect into the W̃q of the node
with the higher index (as we restrict the sum to q̃ < q). The goal of this analysis will
be to distinguish the common input from the third line from the causal connections
of the first two lines. (We will assume any correlations at zero delay are due to the
common input described on the fourth line.)

The fifth and sixth lines of (3.10b) involve only measured nodes. These lines are
similar to the second and third lines of (3.8), and their presence in (3.10) has a similar
origin. When the effective parameters of node q were determined, the activity of node
q̃ was ignored. Nonetheless, connections from node q̃ onto node q still influenced the
activity of node q. As we described in the context of (3.8), the activity of node q̃
could induce correlations in the activity of node q if it had connections onto node q
that lasted multiple time steps. Similarly, node q̃ could induce correlations in node q
via an indirect connection from node q onto itself through node q̃.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

366 DUANE Q. NYKAMP

If the network contains such a pattern of connections, the effective distribution Pq

of node q would already contain such correlations as part of the history dependence
of the model. Hence, the probability distribution of RQ in (3.10) would contain
these correlations in the activity of node q even if all W̄ were zero. However, these
correlations in the activity of node q were caused by connections (i.e., nozero W̄ )
between node q and q̃, as described above. When these individual connections are
added to (3.10) via the direct causal connections of the first line of (3.10b), the
resulting correlations in the activity of node q will have been added to (3.10) twice.
To correct for this, we need to explicitly subtract them off via the fifth and sixth lines
of (3.10b).

3.3.2. Grouping the effects of hidden nodes. Once the effective parameters
θiq have been determined for all measured nodes q, the only unknowns in (3.10) are

the connectivity factor W̄ and all expressions involving hidden nodes p. We group
these unknowns into two expressions:

W i2,i1
q2,q1 = W̄ i2,i1

q2,q1 +
∑
p

∑
ı̃

i1>ı̃>i2

W̄ ı̃,i1
p,q1E0

(
∂Rı̃

p

∂Ri2
q2

)
,

U i2,i1
q2,q1 =

∑
p

∑
ı̃1 ,̃ı2

ı̃1<i1 ,̃ı2<i2

W̄ ı̃1,i1
p,q1 W̄ ı̃2,i2

p,q2 [E0(R
ı̃1
p Rı̃2

p ) − E0(R
ı̃1
p )E0(R

ı̃2
p )],(3.11)

defined for q2 �= q1. The causal connection factor W i2,i1
q2,q1 is the effective causal connec-

tion from node q2 onto node q1. It includes an indirect causal connection via a hidden
node p. The direct and indirect causal connections are lumped together as we cannot
distinguish between them. The common input factor U i2,i1

q2,q1 is the effective common
input from hidden nodes that arrives at node q2 at time i2 and at node q1 and time
i1. Both W i2,i1

q2,q1 and U i2,i1
q2,q1 include sums over arbitrary hidden nodes. Although we

cannot resolve the individual contributions of the hidden nodes, we will be able to
solve for these effective parameters.

We also rewrite the expression for the expected value of the derivative to pull
out the hidden factor of W̄ contained in it. From the definition (3.7) as well as the
definitions of the derivatives (3.6) and (3.9), we write4

E0

(
∂Ri

s

∂Rı̃
s̃

)
=
∑
rs

ris
∂Ps

∂rı̃s̃
=
∑
rs

ris
∑
i2

ı̃<i2≤i

W̄ ı̃,i2
s̃,s

∂P i2
s

∂w

1

P i2
s

∏
i3

P i3
s

=
∑
i2

ı̃<i2≤i

W̄ ı̃,i2
s̃,s E0

(
Ri

s

∂P i2
s

∂w

1

P i2
s

)
.(3.12)

With these definitions of W and U , W̃ i
q becomes

W̃ i
q =

∑
q̃

q̃ �=q

∑
ı̃

ı̃<i

W ı̃,i
q̃,q[r

ı̃
q̃ − E0(R

ı̃
q̃)]

+
∑
q̃

q̃ �=q

∑
ı̃

ı̃<i

U ı̃,i
q̃,q

∂P ı̃
q̃

∂w

1

P ı̃
q̃

+
∑
q̃

q̃<q

U i,i
q̃,q

∂P i
q̃

∂w

1

P i
q̃

4One subtlety in (3.12) is the fact that we restrict i2 ≤ i. If i2 > i, then the term disappears due
to a similar argument as underlying the identities in (A.3).
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−
∑
q̃

q̃ �=q

∑
ı̃1 ,̃ı2 ,̃ı3
ı̃2<ı̃3<i
ı̃1<i

W ı̃1,i
q̃,q W ı̃2 ,̃ı3

q̃,q

∂P ı̃3
q

∂w

1

P ı̃3
q

[E0(R
ı̃1
q̃ Rı̃2

q̃ ) − E0(R
ı̃1
q̃ )E0(R

ı̃2
q̃ )]

−
∑
q̃

q̃ �=q

∑
ı̃1 ,̃ı2 ,̃ı3

ı̃2<ı̃3≤ı̃1<i

W ı̃2 ,̃ı3
q,q̃ W ı̃1,i

q̃,q E0

(
Rı̃1

q̃

∂P ı̃3
q̃

∂w

1

P ı̃3
q̃

)
[rı̃2q − E0(R

ı̃2
q )].(3.13)

Note that, according to (3.12), the quantity E0

(
∂Rı̃

s̃/∂R
i
s

)
is O(W̄ ). Hence, the

definition (3.11) of W shows that W is a first-order approximation to W̄ (i.e., W ı̃,i
q̃,q =

W̄ ı̃,i
q̃,q + O(W̄ 2)). This means that, in terms that are quadratic in W̄ , we can replace

W̄ with W and still maintain our second-order approximation (as the error is cubic
in W̄ ). This allowed us to write (3.13) in terms of just the effective W .

Our expression for the probability distribution Pr(RQ|X) of the measured activity
is now (3.10a) combined with (3.13). Given the effective parameters θiq, we can

calculate the P i
q and the ∂P i

q/∂w via (3.9). We can also calculate, in principle, all of
the expressions involving E0(·) using the definitions in (3.7). (We estimate these via
Monte Carlo simulations, as described in Appendix C.) Therefore, the only remaining
unknown factors are the causal connection factors W and the common input factors U .

3.3.3. A further assumption for a tractable solution. Our goal is to es-
timate W and U by finding their values that maximize our approximation of the
probability distribution of measured activity. In other words, we seek maximum like-
lihood estimators of W and U . However, there are still too many unknowns to make
the solution tractable, as we still have more unknowns than we would have data points
(we have only one measurement of activity per measured node per time point).5 To
reduce the number of unknowns, we assume that W and U depend only on the dif-
ference between their temporal indicies, i.e.,

W i−j,i
q1,q2 = W j

q1,q2 and U i−j,i
q1,q2 = U j

q1,q2 .(3.14)

(One could presumably weaken this assumption by allowing W and U to change
slowly over time at the cost of additional computational complexity and increased
data requirements.)

This assumption for W has no hidden surprises, as it is equivalent to assuming that
the underlying connectivity W̄ depends only on the difference in temporal indicies.6

However, this assumption for U is more significant than may appear at first glance.
It turns out that this assumption is really about the hidden nodes and affects how
one can interpret the meaning of W and U .

To demonstrate this, we rewrite the definition of U from (3.11) using the index j
to indicate the difference between temporal indices:

U i1−j1,i1
q2,q1 =∑

p

∑
j2,j3

j2>0,j3>0

W̄ i1−j2,i1
p,q1 W̄ i1−j1−j3,i1−j1

p,q2 [E0(R
i1−j2
p Ri1−j1−j3

p )−E0(R
i1−j2
p )E0(R

i1−j1−j3
p )].

5Perhaps one could solve for W and U in full generality if one could repeatedly sample from
a small number of time bins and one assumed that the W̄ could vary over the time bins but were
identical for each repetition.

6The effect of the connectivity, however, could vary with time, as each Ps(·) could change with
time.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

368 DUANE Q. NYKAMP

Our assumption on U i1−j1,i1
q2,q1 is that it is independent of i1. If the W̄ depend only

on the difference in temporal indices, the only place on the right-hand side where i1
doesn’t immediately drop out is in the (co)variance of activity of the hidden node p.
Hence, by insisting that U i1−j1,i1

q2,q1 be independent of i1, we are really approximating
the covariance of each hidden node p as though it were independent of time bin i1.
Equivalently, we could view this approximation as replacing the covariance of node p
with its average over all time bins i1.

As detailed in [14], such an approximation leads to a certain degree of ambiguity in
the identification of causal connections, which we refer to as subpopulation ambiguity.
This ambiguity contains subtleties that are out of the scope of this article and are
discussed extensively in [14]. We illustrate the basic consequences of the ambiguity
with simulation results (see section 4.4). Note also that, as described in [14], this
ambiguity is already present in many experimental contexts (such as those commonly
used in neuroscience); hence, in those contexts, this approximation does not add
additional ambiguity.

Putting this all together, our procedure to construct the causal connections among
measured nodes is as follows. For each measured node indexed by q ∈ Q, determine
the effective parameters θiq by fitting the averaged model (2.3) to the external variables

X and the activity Ri
q of node q. (We assume such an algorithm for determining the

θiq is known.) Then determine the effective causal connections W j
q1,q2 and the effective

common input U j
q1,q2 from the external variables and the activity RQ of all measured

nodes by finding the values of W j
q1,q2 and U j

q1,q2 that maximize the log-likelihood
modeled by the equation

log Pr(RQ = rQ|X = x) =
∑
q

∑
i

logPq

(
riq, r

<i
q ,x, W̃ i

q ; θ
i
q

)
,(3.15a)

where

W̃ i
q =

∑
q̃

q̃ �=q

∑
j

j>0

W j
q̃,q[r

i−j
q̃ − E0(R

i−j
q̃ )]

+
∑
q̃

q̃ �=q

∑
j

j>0

U j
q̃,q

∂P i−j
q̃

∂w

1

P i−j
q̃

+
∑
q̃

q̃<q

U0
q̃,q

∂P i
q̃

∂w

1

P i
q̃

−
∑
q̃

q̃ �=q

∑
j1,j2,j3

j1,j2,j3>0

W j1
q̃,qW

j2
q̃,q

∂P i−j3
q

∂w

1

P i−j3
q

[E0(R
i−j1
q̃ Ri−j3−j2

q̃ )−E0(R
i−j1
q̃ )E0(R

i−j3−j2
q̃ )]

−
∑
q̃

q̃ �=q

∑
j1,j2,j3
j1,j2>0
j3≥0

W j2
q,q̃W

j1
q̃,qE0

(
Ri−j1

q̃

∂P i−j1−j3
q̃

∂w

1

P i−j1−j3
q̃

)
[ri−j1−j3−j2

q −E0(xR
i−j1−j3−j2
q )].

(3.15b)

Unfortunately, especially with the terms that are quadratic in W , one cannot be
certain that the log-likelihood is free of nonglobal local maxima. So, in general, one
needs to be aware that one could get trapped in such a local maximum in the process
of looking for the global maximum. The likelihood surface may be better behaved
if one ignores the quadratic terms (the final two terms in (3.15b)). We next present
an example probability distribution Ps where the likelihood surface has no nonglobal



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXPLOITING HISTORY-DEPENDENT EFFECTS 369

local maxima in the absence of the quadratic terms. We use that fact to find a local
maximum of the full log-likelihood that, at least in our tests, gives good results.

3.4. Special case: A Poisson distribution. We present a special case of the
results when the activity of each node at each time step is drawn from a Poisson
distribution. We use such a distribution because, for small time bins, the averaged
model approximates a generic history-dependent point process [4, 5], which one can
use to model the spike times of a neuron. Moreover, the results with the Poisson dis-
tribution illustrate how history dependence can distinguish common input from causal
connections, as discussed below. We use the Poisson model when we demonstrate the
results via simulations.

Since we assume that Ri
s, the activity of node s at time bin i, is a Poisson random

variable, we simply need to specify its mean. We can write the probability distribution
of Ri

s as

Ps(r
i
s, r

<i
s ,x, w; θis) = Γ(ris, λs(r

<i
s ,x, w; θis)),(3.16a)

where

Γ(n, λ) =
1

n!
λne−λ.(3.16b)

The function λs(r
<i
s ,x, w; θis) defines how the expected value of Ri

s depends on the
history r<i

s of node s, the external variables x, and the total input w from other
neurons. We rewrite the log-likelihood (3.15) as

log Pr(RQ = rQ|X = x) =
∑
q,i

riq log λq(r
<i
q ,x, W̃ i

q ; θ
i
q) −

∑
q,i

λq(r
<i
q ,x, W̃ i

q ; θ
i
q) + C,

(3.17a)

where

W̃ i
q =

∑
q̃

q̃ �=q

∑
j

j>0

W j
q̃,q[r

i−j
q̃ − E0(λq̃(R

<i−j
q̃ ,x, 0; θi−j

q̃ ))]

+
∑
q̃

q̃ �=q

∑
j

j>0

U j
q̃,q[r

i−j
q̃ − λq̃(r

<i−j
q̃ ,x, 0; θi−j

q̃ )]
∂wλq̃(r

<i−j
q̃ ,x, 0; θi−j

q̃ )

λq̃(r
<i−j
q̃ ,x, 0; θi−j

q̃ )

+
∑
q̃

q̃<q

U0
q̃,q[r

i
q̃ − λq̃(r

<i
q̃ ,x, 0; θiq̃)]

∂wλq̃(r
<i
q̃ ,x, 0; θiq̃)

λq̃(r
<i
q̃ ,x, 0; θiq̃)

+ quadratic terms.(3.17b)

The constant C = −
∑

q,i log((riq)!) can be ignored since we simply want to maximize

(3.17) over W and U with everything else fixed. We use the notation ∂wλq̃(r
<i−j
q̃ ,x, w;

θi−j
q̃ ) for the partial derivative of λq̃(·) with respect to w.

The quadratic terms are the last two lines of (3.15b); we gain no insight by
rewriting them in terms of the Poisson distribution. As detailed in section 3.3.1, they
are needed to have a correct second-order expression. However, they don’t directly
contribute to the distinction between causal connections and common input.

3.4.1. Different effects of causal connections and common input. From
(3.17), we see two important differences in the way that the causal connections W and
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the common input U affect the probability distribution Pr(RQ|X) of the measured
node activity. Our ability to successfully distinguish causal connections from common
input connections is based on these two differences.

The first difference is that the common input terms have an additional ∂wλq̃/λq̃

factor. In previous work [14], this factor was the only difference that appeared be-
cause the analysis did not exploit history-dependent effects. As detailed in [14], this
difference alone can distinguish causal connections from common input in many cases.
Even if one did not model history-dependent effects, the relationship among external
variables (such as a stimulus) and the activity of measured nodes would distinguish
common input from causal connection, and this difference is captured by the ∂wλq̃/λq̃

factor.
The second difference in the way W and U appear in (3.17) is due to the history-

dependent effects. This second difference is the focus of this paper. It turns out
that this difference is exactly what we observed in the exaggerated example presented
in the introduction and illustrated in Figure 2. For both the causal connection W
term and the common input U term of (3.17b), a certain quantity is subtracted from
the activity ri−j

q̃ . The difference between these quantities can distinguish a causal
connection from common input. In what follows, we will show that the key difference
is that the activity predicted by a node’s history dependence is subtracted only from
the common input term.

Equation (3.17) shows that a causal connection from node q̃ onto node q induces
a change in the probability distribution of node q proportional to the deviation of the
activity of node q̃ from that predicted by the averaged model (2.3). That is, in the

causal connection term (first line of (3.17b)), a contribution is added to W̃ i
q when the

measured activity of node q̃ (i.e., ri−j
q̃ ) differs from its expected value E0(R

i−j
q̃ ) =

E0(λq̃(R
<i−j
q̃ ,x, 0; θi−j

q̃ )) given by the averaged model.

An important point is that, once the effective parameters (θı̃q̃ for all ı̃) have been

determined, this expected value E0(R
i−j
q̃ ) does not depend on the actual history r<i−j

q̃

of node q̃. This expected value is an average over all possible histories of node q̃, given
the effective parameters and the external variables.7 For example, imagine that Ri

q̃

corresponds to the number of spikes of neuron q̃ in time bin i (with a sufficiently small
time bin so that Ri

q̃ > 1 with vanishingly small probability). Imagine, moreover, that
(similar to neuron 1 in Figure 2) neuron q̃ tended to spike in pairs so that if it spiked
in time bin i − 1 but not in time bin i − 2, it was very likely to spike in time bin i:
Pr(Ri

q̃ = 1|Ri−1
q̃ = 1 & Ri−2

q̃ = 0) ≈ 1. If one used an appropriate model, then the
averaged model (2.3) would capture this tendency to fire in pairs once the parameters
θq̃ were fit to the spikes Rq̃ of neuron q̃. Even so, the expected value E0(R

i
q̃) would

not depend on the presence or absence of spikes in the previous two time bins; it is
independent of the specific history of node q̃. Even if ri−1

q̃ = 1 and ri−2
q̃ = 0, the

expected value E0(R
i
q̃) would not be close to one. If indeed riq̃ = 1, then both the

spike at time bin i − 1 and the spike at time bin i would contribute equally to the
causal connection term in the first line of (3.17b).8

7We calculate this value via Monte Carlo. We repeatedly generate a realization of the activity of
node q̃ for all time points according to the averaged model (2.3). The average activity at each time
point i over many such realizations is our estimate of E0(Ri

q̃). See Appendix C.
8One would get a similar result if neuron q̃ had a refractory period where, for example, it could

not spike in time i if it spiked in time bin i − 1: Pr(Ri
q̃ = 1|Ri−1

q̃ = 1) = 0. Even if neuron q̃ did

spike at time bin i− 1, the presence of the refractory period would not affect E0(Ri
q̃).
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We contrast this observation with the common input term from the second line of
(3.17b). In the common input term, the activity ri−j

q̃ of node q̃ is subtracted by the

mean λq̃ of the Poisson distribution, given the specific history r<i−j
q̃ measured from

node q̃. Unlike the causal connection term, this quantity is the expected value of Ri−j
q̃ ,

conditioned on the measured history r<i−j
q̃ : λq̃(r

<i−j
q̃ ,x, 0; θi−j

q̃ ) = E0(R
i−j
q̃ |R<i−j

q̃ =

r<i−j
q̃ ). This is still an expected value based on the averaged model, but it is not

an average over all possible histories of node q̃. As above, imagine that node q̃
was a neuron that tended to fire pairs of spikes and that one used a model that
accurately captured this firing pattern. Then, if ri−1

q̃ = 1 and ri−2
q̃ = 0, the expected

value λq̃(r
<i
q̃ ,x, 0; θiq̃) would be close to one because the model predicts that neuron q̃

should immediately fire a second spike. If indeed riq̃ = 1, this spike would have little

contribution to the second line of (3.17b) as riq̃ − λq̃(r
<i
q̃ ,x, 0; θiq̃) would be small.

Equation (3.17) therefore demonstrates that the intuition we gain from the exag-
gerated example of Figure 2 is applicable to the more realistic situation we used to
derive (3.17). For example, although it isn’t intuitively obvious what should happen
when all nodes have strong history dependence, (3.17) shows that one may estimate
the connectivity even in that case, provided one has a model through which one can
accurately capture the history dependence of the measured nodes.

3.4.2. Tractable computation of maximum likelihood estimators. In or-
der to efficiently compute maximum likelihood estimators of W and U , we’d like to
make sure that any local maxima of the log-likelihood (3.17) are indeed global max-
ima. As discussed below, if one ignores the quadratic terms in (3.17b), one can develop
a condition on the form of λs to ensure all local maxima are global maxima. One can
then use the solution to the reduced problem (without quadratic terms) to guide the
search for a solution to the full problem.

If we ignore the quadratic terms from (3.17b), then W̃ i
q is linear in W and U , and

the log-likelihood (3.17) has the same form of dependence on W and U as discussed
in [14]. Since concavity is preserved under addition and riq ≥ 0, the log-likelihood will

be concave in W and U if λq(r
<i
q ,x, w; θiq) is convex in w and log λq(r

<i
q ,x, w; θiq) is

concave in w. Reference [17] describes this condition in a more general setting and
outlines the ensuing requirements on λq, such as the fact that λq must be monoton-
ically increasing in w and must grow at least linearly in w. If the log-likelihood is
concave in W and U , there can be no nonglobal local maxima.

We base our search for a maximizer of the full log-likelihood (3.17) on the maxi-
mizer for reduced log-likelihood (ignoring the quadratic terms of (3.17b)). We form a
homotopy from the reduced problem to the full problem by multiplying the quadratic
terms by some number γ ∈ [0, 1]. After maximizing the reduced log-likelihood (γ = 0),
we form a series of log-likelihoods with increasing γ. For each problem, we use the
maximizer of the previous problem as the initial condition. We end up with a maxi-
mizer of the full log-likelihood (γ = 1). Although we cannot guarantee that we have
found a global maximizer, we have achieved good results using this algorithm in our
simulation tests. (To calculate the maximizer for a given γ, we iterate to a critical
point of (3.17) using a modified version of Powell’s hybrid method as implemented in
the GNU Scientific Library [6].)

4. Results.

4.1. Overview of simulations. To test the performance of our analysis, we
simulated small networks of simplified neurons responding to a stimulus X. Our goal
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is to demonstrate that we can distinguish the common input and causal connection
networks schematized in Figure 1, under the condition that the common input neuron
is unmeasured.

4.1.1. The stimulus. The external variables X represented the same one-
dimensional (i.e., constant along vertical lines) visual stimulus as detailed in [14].
This stimulus was a movie of a sequence of sinusoidal gratings Ik with wave number
k. The jth line of Ik was Ikj = cas(2πkj/N0), where casx = cosx + sinx, N0 = 100,
and 0 ≤ j ≤ N0 − 1. Every 10 simulated milliseconds, a new image was selected, with
replacement, from the set composed of the Ik and −Ik, for k = −10,−9, . . . , 9, 10.
The movie was one simulated minute long.

4.1.2. The simulated neurons. In the simulated networks, we let each neuron
be a generalized linear model (also called a linear-nonlinear model). We discretized
time into Δtsim = 0.5 ms time bins. In each time bin i, we let the probability that a
neuron spiked be a linear function of its spiking history, the stimulus X, and previous
spikes of other neurons, composed with a half-squaring nonlinearity,

(4.1)

Pr(Ri
p = 1|R<i = r<i,X = x)

= AΔtsim

⎡⎣∑
j>0

h̄j
hist,pr

i−j
p + h̄i

ext,p · x +
∑
q �=p

∑
j>0

W̄ j
q,pr

i−j
q + ȳp

⎤⎦2

+

,

where [y]2+ = y2 if y > 0 and is zero otherwise. The activity variable Ri
p = 1 if neuron

p spiked in time bin i and Ri
p = 0 otherwise. We set A = 0.01 ms−1. The value of

the threshold parameters ȳp, coupling parameters W̄ j
q,p, and other parameters that

appear below are given in the context of specific simulations. If (4.1) resulted in a
probability greater than one, it was truncated to one.

The linear kernel h̄hist,p specified the spike-history dependence of neuron p. We

included a refractory period of length τ ref
p by setting h̄j

hist,p = −100 for jΔtsim ≤ τ ref
p .

(Since −100 was much larger in magnitude than other parameters in (4.1), Pr(Ri
p = 1)

was zero for an interval of τ ref
p after each spike.) After the refractory period, we let

the history-dependent term transiently increase the probability of a spike by setting

h̄j
hist,p = ahist,pe

−jΔtsim/τhist,p for jΔtsim > τ ref
p .

As our purpose is to demonstrate the effect of history dependence, we included strong
history dependence in each model neuron, setting ahist,p relatively large and positive.
Hence, the history-dependence term created a tendency for spikes to occur in bursts,
leading to significant peaks in autocorrelation, such as shown in Figure 3.

We used the same spatiotemporal kernels h̄ext,p as in [14], retaining the convention
that h̄i

ext,p was the kernel h̄ext,p shifted for time point i. For line j = 0, 1, . . . , N0 and
temporal index t, we used the form

h̄ext,p(j, t) = (t− bp) exp

(
− t− bp

τext,p
− (j − c)2

2σ2
p

)
cos(2πfp(j − c) + φp)

for t > bp and h̄ext,p(j, t) = 0 otherwise [10]. To center the kernels on the image, we set
c = (N0 − 1)/2. The vector h̄ext,p corresponded to h̄ext,p(j, kΔtsim) for integer k with
kΔtsim < 200 ms. We normalized h̄ext,p so that the standard deviation of h̄i

ext,p ·X was
equal to the parameter aext,p; hence, aext,p specified how strongly neuron p responded
to the stimulus.
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Fig. 3. Examples of the large autocorrelations due strong history dependence included in sim-
ulated models. The autocorrelation of neuron p at delay j is 〈Ri

pR
i−j
p 〉 − 〈〈Ri

p|X〉〈Ri−j
p |X〉〉, where

〈·|X〉 indicates averaging over all repeats of the stimulus and 〈·〉 indicates averaging over all time
points. Shown are the autocorrelations from neuron 1 (left) and neuron 2 (left) in the simulation of
Figure 4(A). Autocorrelation at zero delay has been truncated to zero.

We used interneuronal coupling of the form

W̄ j
pq = Bpq

jΔtsim − dpq
τ2
w

exp

(
−jΔtsim − dpq

τW

)
for jΔtsim > dpq and W̄ j

pq = 0 otherwise. Hence, dpq represented the delay and Bpq

the strength of the connection. For all connections, we set the time scale to τW = 0.5
ms.

4.1.3. The model used in the analysis. We also used a generalized linear
model (or linear-nonlinear model) for the analysis. (In [14], we test an earlier version
of the analysis for stronger deviations from the simulated model.) In the analysis, we
uses a temporal discretization of Δt = 1 ms.

We modeled the activity of each neuron in time bin i as a Poisson distribution
(section 3.4) with the expected value given by

λs(r
<i
s ,x, w; θis) = As log

⎛⎝1 + exp

⎡⎣∑
j>0

hj
hist,sr

i−j
s + hi

ext,s · x + w + ys

⎤⎦⎞⎠ .(4.2)

The parameters θis correspond to As and ys, as well as the parameters within hhist,s

and hext,s. We used this form of the nonlinearity so that λs would be convex and log λs

would be concave, a requirement for tractable numerical computations discussed in
section 3.4.2 and [17]. We discuss how to determine the parameters θis in Appendix B.

4.2. Distinguishing common input from direct connection. We simulated
two networks analogous to those schematized in Figure 1. In the first network, neuron
2 had a direct connection onto neuron 1. In the second network, a third, unmeasured
neuron had a direct connection onto both neurons 1 and 2, with a longer delay onto
neuron 1. In both cases, the spikes of neuron 1 were correlated with a delayed version
of the spikes of neuron 2.

We simulated the response of each network to ten repetitions of the minute-
long movie described above. Then we set the thresholds ȳp so that each neuron
spiked approximately 1,000 times during each presentation of the movie, obtaining
approximately 10,000 spikes per neuron. The spikes from the third, common input
neuron were discarded, as we treated that neuron as an unmeasured neuron.

Since we analyze just the spikes of two neurons, we will plot both the causal
connection factor W and the common input factor U as a function of the delay j
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defined as spike time of neuron 1 minus spike time of neuron 2. Hence, our plots will
use the convention

W j =

⎧⎪⎨⎪⎩
W−j

12 for j < 0,

0 for j = 0,

W j
21 for j > 0,

U j =

{
U−j

12 for j ≤ 0,

U j
21 for j > 0.

As shown in Figure 4, we were able to successfully distinguish the common input
network from the direct connection network, despite the fact that the correlations
between neurons 1 and 2 looked the same in both cases. The causal connection
measure W was positive in the direct connection network; the common input measure
U was positive in the common input network.

Section 3.4.1 outlines two differences between causal connections and common
input that our analysis exploits to make this distinction. Only one of those differences
was due exclusively to the history-dependence modeling that is the focus of this paper.
To test the relative importance of the history-dependent factor, we reanalyzed the
simulation of Figure 4 while ignoring any history-dependent effects. We set hhist,p

in (4.2) to zero, essentially reverting our analysis back to an earlier version [14]. In
this case, we model the expected activity of a node as independent of its measured
history (conditioned on the external variables X), so we remove the difference between
the causal connection and common input terms of (3.17b) that is attributed to this
history dependence.

The results after ignoring history-dependent effects (not shown) differed only
slightly from the results when employing the full model. As in Figure 4, W was
positive in the direct connection network, and U was positive in the common input
network. Note that the simulations were generated with strong history dependence
(yielding autocorrelations as in Figure 3). The fact that we achieved good results even
while assuming no history dependence indicates that the analysis is at least somewhat
robust to deviations from model assumptions.

4.3. Improvement from modeling history dependence. Although the
above results do indicate that the analysis that includes history dependence can suc-
ceed in distinguishing causal connections from common input, we wish to demonstrate
that we have gained analytic power from our history-dependent modeling. Adding
history-dependent effects to our modeling introduced significant complexity compared
to an earlier version of the analysis [14]. To justify such complexity, we must demon-
strate an improved ability to distinguish connectivity.

One limitation of earlier versions [13, 14] of this analysis is that they require
that the neural activity be strongly related to measurable external variables (such
as stimuli) in a manner that one can capture with a model. In many experimental
contexts, such as when recording from brain areas that are not closely linked to a
stimulus, such a strong relationship between external variables and neuronal activity
may not be available. In such cases, the earlier versions of the analysis may not
apply. On the other hand, if such neurons have a strong history dependence that
can be captured by a model, the additional handle provided by history-dependent
modeling may allow one to apply the analysis to these systems.

To demonstrate how the history-dependent modeling can improve the results,
we repeated the simulation of Figure 4 but weakened the relationship between the
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Fig. 4. Successfully distinguishing a causal connection from common input. (A) Results from
analyzing a network where neuron 2 has a direct connection onto neuron 1, as schematized at top.
The correlation (shuffle-corrected correlogram or covariogram [19, 1, 16]) at delay j is 〈Ri

1R
i−j
2 〉 −

〈〈Ri
1|X〉〈Ri−j

2 |X〉〉, where the averaging 〈·〉 is defined as in Figure 3. The direct connection leads
to a peak in the correlation at a positive delay. The causal connection measure W (but not the
common input measure U) has a positive peak at the same delay, indicating the presence of a causal
connection from neuron 2 onto neuron 1. (At the peak, W was seven standard errors from zero.)
Thin gray lines indicate a bootstrap estimate of three standard errors, calculated by resampling
from the set of stimulus repetitions 50 times. Simulation parameters: ahist,1 = 1.2, ahist,2 = 1.5,
τhist,1 = 10 ms, τhist,2 = 12 ms, ȳ1 = 0.5, ȳ2 = 0.7, b1 = b2 = 0, aext,1 = aext,2 = 1, τext,1 = 40
ms, τext,2 = 50 ms, σ1 = 10, σ2 = 15, f1 = 0.08, f2 = 0.04, φ1 = 0, φ2 = 2π/3, B21 = 1.2,
d21 = 3, B11 = B12 = B22 = 0. (B) Results from analyzing a network where an unmeasured neuron
(hatched circle in schematic at top) has a connection onto neuron 1 and onto neuron 2. Since
the connection onto neuron 1 has a longer delay, there is a peak in the correlation at a positive
delay that is indistinguishable from a peak in correlation due to a direct connection from neuron
2 onto neuron 1. Only U , and not W , has a positive peak at the same delay, indicating that the
correlation was due to common input rather than any causal connection from neuron 2 onto neuron
1. (At the peak, U was five standard errors from zero.) Most parameters as in panel A. Exceptions
and additional parameters (the unmeasured neuron is indexed by 3): ahist,3 = 1.0, τhist,3 = 6 ms,
ȳ2 = 0.6, ȳ3 = 0.8, b3 = 0, aext,3 = 1, τext,3 = 45 ms, σ3 = 20, f3 = 0.06, φ3 = 4π/3, d31 = 4,
d32 = 0, B31 = B32 = 4.5, Bij = 0 for all other i and j.

neuronal activity and the stimulus. We reduced the magnitude of the external variable
terms hext,p · X by a factor of 5 (reducing their standard deviation aext,p from 1 to
0.2). As this greatly increased the difficulty of the network analysis, we also doubled
the simulation length to 20 simulated minutes (20 repeats of the movie), obtaining
around 20,000 spikes from each neuron.

The results of the analysis based on the full model (4.2) are shown in Figure 5.
Despite the weak dependence on the stimulus, the analysis was still able to determine
which network contained the causal connection and which network contained common
input.

In this case, since the neurons’ activities were only weakly related to the stimulus,
the history-dependent effects played a bigger role in determining the connectivity. To
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Fig. 5. Determining circuitry even when neuronal activity is only weakly related to the stim-
ulus. The same networks as in Figure 4 were simulated, except that the magnitude of the stimulus
input was decreased by a factor of 5 and the simulation length was doubled. The causal connec-
tion network was still distinguished from the common input network, primarily due to exploitation
history-dependent effects (cf. Figure 6, where these effects were ignored). Panels as in Figure 4.
(A) The causal connection measure W has a peak at the same delay as the correlation, indicating
the correlation was due to a causal connection from neuron 2 onto neuron 1. (At the peak, W was
six standard errors from zero.) Parameters as in Figure 4(A), except that aext,1 = aext,2 = 0.2,
ȳ1 = 1.1, and ȳ2 = 1.1. (B) The common input measure U has a peak at the same delay as the
correlation, indicating the correlation was due to common input. (At the peak, U was five stan-
dard errors from zero.) Parameters as in Figure 4(B), except that aext,1 = aext,2 = aext,3 = 0.2,
ȳ1 = 1.0, ȳ2 = 1.0, ȳ3 = 1.2, and B31 = B32 = 4.

demonstrate the role of the history-dependent model, we reanalyzed the simulation
results of Figure 5 while ignoring history-dependent effects (as above, we set hhist,p in
(4.2) to zero). This time, the analysis was unable to make a clear distinction between
the direct connection network and the common input network, as shown in Figure 6.
In the direct connection network of Figure 6(A), both W and U were positive so that
the result was ambiguous. In the common input network of Figure 6(B), only U was
positive at the delay corresponding to the correlation, but U was barely above the
noise, and the result was much weaker than in Figure 5(B). (If we quadrupled the
simulation to 80 simulated minutes, then the network analysis was able to determine
the connectivity even with ignoring history-dependent effects.)

4.4. Subpopulation ambiguity. In section 3.3.3, we described an assumption
we made about the hidden nodes in order to complete our analysis. We briefly men-
tioned that this assumption resulted in a certain degree of ambiguity in the identity
of causal connections. This ambiguity is described in detail in [14], where we refer to
it as subpopulation ambiguity.

The nature of the subpopulation ambiguity is illustrated by Figure 7. Here we
repeated the simulation of the common input network of Figure 4(B), except we
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Fig. 6. Reanalyzing the simulations of Figure 5 while ignoring all history-dependent effects.
The history kernel hhist of (4.2) was set to zero, so the analysis could not exploit the differences
between causal connection and common input networks that are caused by history dependence. In this
case, since the neural activity was only weakly related to the stimulus, the analysis failed to cleanly
distinguish the circuitry. Panels as in Figure 4. (A) The causal connection measure W did have a
(small) positive peak at the delay of the peak in the correlation. However, the common input measure
U also had a positive peak at that delay, so that the identity of the causal connection could not be
clearly determined. (At the peak W was three standard errors and U was over two standard errors
from zero.) (B) Only the causal connection measure U had a peak at the delay of the correlation peak,
so the results do correctly point to the presence of common input. However, the peak in U at that
delay is small (though it was three standard errors from zero), especially compared to Figure 5(B),
indicating that ignoring history dependence hampered the ability to determine circuitry.

changed the kernel h̄ext,3 of the unmeasured neuron first to match the kernel h̄ext,2 of
neuron 2 and then to match the kernel h̄ext,1 of neuron 1. As shown in Figure 7(A),
the analysis misidentifies the common input as a causal connection when the kernel of
the unmeasured common input neuron matched neuron 2. The analysis does not have
any trouble correctly identifying the common input when the kernel of the unmeasured
common input neuron matched neuron 1, as shown in Figure 7(B).

We argue that the misidentification in Figure 7(A) merely introduces a relatively
modest ambiguity into the interpretation of the results. Clearly, one cannot justify
a strict interpretation that the peak in W always indicates a causal connection from
neuron 2 itself onto neuron 1. However, note that in the network of Figure 7(A)
there is a causal connection from the unmeasured neuron onto neuron 1 and that this
unmeasured neuron has similar properties to neuron 2 (one might use the language
that the unmeasured neuron has a receptive field that is similar to that of neuron 2).
Hence, one can make a looser interpretation of the peak in W to indicate the presence
of a causal connection onto neuron 1 from some neuron with properties (or receptive
field) similar to neuron 2.

In experiments where one measures only the spike times of individual neurons,
neurons are identified only by their properties, such as the relationship between their
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Fig. 7. An illustration of the subpopulation ambiguity in the identification of the individual
neurons involved in a connection. Note that, in both networks shown, the delays are set up so that
the correlations mimic a connection from neuron 2 onto neuron 1. Hence neuron 1 and neuron 2
do not play symmetric roles. Panels as in Figure 4. (A) When the unmeasured neuron has similar
properties as neuron 2 (as schematized by the black circles at top), the causal connection factor W
has a peak at the delay of the correlation peak, incorrectly indicating a connection from neuron 2
onto neuron 1. (At the peak, W is four standard errors from zero.) However, there is a connection
onto neuron 1 from a neuron similar to neuron 2 (a black neuron in the schematic). Hence, W
must be interpreted as indicating a causal connection onto neuron 1 from a neuron with properties
similar to those of neuron 2. Parameters as in Figure 4(B), except that ȳ1 = 0.4, ȳ2 = 0.5, ȳ3 = 0.9,
b2 = 1 ms, τext,3 = 50 ms, σ3 = 16, f3 = 0.038, and φ3 = 2π/3. (B). When the unmeasured neuron
has properties similar to neuron 1 (as schematized by the gray circles at top), the results correctly
indicate a common input connection as U has a positive peak at the delay of the correlation peak. (At
the peak, U is five standard errors from zero.) In this case, it is important that the analysis obtained
the correct results, as there is no connection from a neuron similar to neuron 2 (a black neuron in
the schematic) onto a neuron similar to neuron 1 (a gray neuron). Parameters as in Figure 4(B),
except that ȳ1 = 0.4, ȳ2 = 0.5, ȳ3 = 0.7, b1 = 5 ms, τext,3 = 40 ms, σ3 = 11, f3 = 0.078, and
φ3 = 0.

spikes and external variables or stimuli. In this case, if two neurons had similar
properties (such as the unmeasured neuron and neuron 2 in Figure 7(A)), those two
neurons would be indistinguishable. Hence, it would not make a difference if one
concluded that neuron 2 had a connection onto neuron 1 or concluded that an un-
measured neuron with similar properties had a connection onto neuron 1. In either
case, the conclusion would be that a neuron with the properties of neuron 2 had a
connection onto a neuron with the properties of neuron 1.

In Figure 7(B), there is no connection from a neuron with properties similar
to neuron 2 onto a neuron with properties similar to neuron 1. Even with the looser
interpretation of the causal connection W , this network cannot be identified as having
a causal connection. It is critical that the analysis correctly identified the correlation
as arising from common input.

In [14], we refer to a group of neurons with similar properties as a subpopulation of
neurons. Since the identity of the presynaptic neuron involved in a connection is nar-
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rowed down only to an individual member within a supopulation, we use the language
that our analysis can determine connectivity only with subpopulation ambiguity. In
using such a term, one must be careful to recognize that one is not assuming con-
nections between groups of neurons but only ambiguity in the identity of individual
neurons. See [14] for more details, including more intuition behind the subpopulation
ambiguity.

5. Discussion. The present work represents a continuation of our development
of methods to determine the pattern of causal connections among measured neurons
while controlling for the effects of unmeasured neurons [14, 13, 12]. We have success-
fully eliminated the limitation of earlier versions that the activity of a neuron could
depend only weakly on its history. In the process, we have discovered that one can
exploit such history dependence to increase one’s ability to distinguish common input
from causal connections.

Although the analysis involved a fair number of technical manipulations, it turns
out that the intuition developed in the introduction does hold for the class of models
we consider. In the common input configuration (Figure 2(B)), but not in the causal
connection configuration (Figure 2(A)), spikes that can be accounted for by the first
neuron’s history dependence do not influence the second neuron’s spiking probabil-
ity (see (3.17)). This difference is exploited by our analysis in order to distinguish
common input from causal connections.

Successfully exploiting history dependence requires a strong dependence on his-
tory in a manner that one can capture by a model. In our simulations, we included
such history dependence and demonstrated that we could use it to improve our esti-
mates of connectivity. It is well known that the spike times of neurons are not well
approximated by a Poisson process [23, 21] and hence contain history dependence.
However, it remains unclear if this history dependence is sufficiently strong and if it
can be sufficiently well modeled to aid in the determination of connectivity.

The analysis was justified by a weak coupling assumption (section 2.2) where the
original coupling W̄ was assumed to be a small parameter. However, even if the origi-
nal coupling W̄ were large and only the perturbation W̃ due to coupling (see (3.15b))
were small, the analysis might still indicate the effective connectivity of the network.
To interpret the analysis under these conditions, one could reinterpret the likelihood
equation (3.15) as a perturbation off the effective models (2.3) rather than off the
original network (2.2). In this case, one cannot assume that the causal connectivity
obtained with W actually corresponds to the underlying connectivity of the network.
Such a reinterpretation of W as an effective connectivity would allow application of
the results to networks where the weak coupling assumption cannot be justified.

Although the analysis depends on selecting appropriate single-neuron models of
the form (2.3), flexibility is given by the modular approach [14] employed in our
analysis. One can develop additional single-neuron models and include them in the
analysis without modification of the network analysis. In the simulation tests, we used
only generalized linear models. Such a model of the dependence of neural activity
on spiking history is, of course, only roughly approximated by such a model. One
future goal is to implement more sophisticated models of history dependence, such
as a stochastic integrate-and-fire model [18]. Paninski, Pillow, and Simoncelli have
already developed efficient numerical schemes for determining the parameters of the
stochastic integrate-and-fire model [18], and the model does fit into the formalism of
(2.3). Such a model may more closely approximate history dependence observed in
biological neurons.
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Although there is a large literature focused on analyzing interactions among neu-
rons [19, 1, 16, 2, 3, 11, 25, 15, 7, 20, 18, 24, 9], we are aware of only one other attempt
to explicitly control for the effects of common input from unmeasured sources. Kulka-
rni and Paninski [9] have recently developed an expectation-maximization algorithm
for fitting a neuronal model that contains a latent noise source that could correspond
to such unmeasured common input. In their approach, the common input (i.e., la-
tent noise) is assumed to be a Gaussian process (justified by thinking of the common
input as a sum of a large number of small inputs). Hence, in place of a point process
model (2.2) for a network containing unmeasured neurons, their model is a doubly
stochastic process or Cox process [22]. As their approach differs significantly from
ours, one future task will be to compare the results of the two methods to understand
their relative strengths and weaknesses.

Earlier versions of our analysis relied exclusively on models of the relationship
between neuron spikes and external variables such as stimuli. As we have demon-
strated via simulations, modeling history-dependent effects may allow one to apply
the analysis even in cases where the activity of neurons is not strongly related to ex-
ternal variables. Especially with the implementation of more sophisticated models of
history dependence, our analysis may become applicable to a large variety of neuronal
systems (or other networks), regardless of whether or not they are strongly linked to
a stimulus or other external variable.

Appendix A. Calculations underlying analysis.

A.1. Averaging over hidden node activity. We outline how to simplify (3.4)
for the probability distribution Pr(RQ|X) of measured node activity RQ by explicitly
computing the averages over hidden node activity RP . We argued in the context of
(3.4) that the value ris of any random variable appears in (3.4) only as a polynomial
in ris times P̄s (or times a derivative of P̄s).

Expressions involving the undifferentiated P̄s are simple. Let a sum over rs denote
the sum over all possible values of the activity rs (i.e., ris for all i) of a given node s.
Then, since P̄s is shorthand for a probability distribution in the rs, we can conclude
that ∑

rs

P̄s = 1,
∑
rs

risP̄s = Ē0(R
i
s), and

∑
rs

ri1s ri2s P̄s = Ē0(R
i1
s Ri2

s ).(A.1)

Ē0(·) denotes the expected value under the probability distribution defined by the Ps

with W arguments set to zero, i.e., for any function g of the activity of nodes,

Ē0(g(R)) =
∑
r

g(r)
∏
s

∏
i

Ps

(
ris, r

<i
s ,x, 0; θ̄is

)
.(A.2)

(The sum over r indicates the sum over all possible values of the activity of all nodes.)
Note that Ē0(R

i
s) is not the expected value of Ri

s under model (2.2); it is the expected
value of Ri

s only if the coupling happened to be zero.
The expressions involving the derivatives of P̄s are more subtle. First, note that,

for any node s,

∑
rs

∏
i

Ps

⎛⎝ris, r
<i
s ,x,

∑
ś �=s

∑
ı́<i

W̄ ı́,i
ś,sr

ı́
ś; θ̄

i
s

⎞⎠ = 1
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independent of any value of the rı̃s̃ for s̃ �= s. (The case when all rı̃s̃ = 0 for s̃ �= s was
the first identity of (A.1).) So, if we differentiate with respect to any rı̃s̃ with s̃ �= s,
we will get zero:

∑
rs

∂

∂rı̃s̃

⎛⎝∏
i

Ps

⎛⎝ris, r
<i
s ,x,

∑
ś �=s

∑
ı́<i

W̄ ı́,i
ś,sr

ı́
ś; θ̄

i
s

⎞⎠⎞⎠ = 0.

In particular, this derivative is zero if we set all rı̃s̃ = 0 for s̃ �= s, so that∑
rs

∂P̄s

∂rı̃s̃
= 0, and

∑
rs

∂2P̄s

∂rı̃1s̃1∂r
ı̃2
s̃1

= 0.(A.3)

On the other hand,

E(Ri
s|{R<i

ś = r<i
ś }ś �=s) =

∑
rs

ris
∏
ı́1

Ps

⎛⎝rı́1s , r<ı́1
s ,x,

∑
ś �=s

∑
ı́2<ı́1

W̄ ı́2 ,́ı1
ś,s rı́2ś ; θ̄ı́1s

⎞⎠
does depend on the values of the rı̃s̃ for s̃ �= s and ı̃ < i. Due to network connections,
the expected value of Ri

s could indeed depend on the value of the past activity of
another node. So, if we differentiate with respect to any rı̃s̃, we won’t necessarily get
zero. Denote this derivative, once we set all rı̃s̃ = 0 for s̃ �= s, as

Ē0

(
∂Ri

s

∂Rı̃
s̃

)
=

∂

∂rı̃s̃
E(Ri

s|{R<i
ś = r<i

ś }ś �=s)

∣∣∣∣
{rś=0|ś �=s}

=
∑
rs

ris
∂P̄s

∂rı̃s̃
.(A.4)

The notation captures that this expression represents how a change in the activity of
node s̃ at time ı̃ affects the average activity of node s at time i. This is nonzero, of
course, only if ı̃ < i. Note that this expression doesn’t depend on Rı̃

s̃, as the derivative
is calculated around Rı̃

s̃ = 0. Note also that this expression need not be zero even if

Rı̃
s̃ does not directly influence Ri

s, i.e., if W̄ ı̃,i
s̃,s = 0. Because we have allowed Ri

s to

depend arbitrarily on its history Ri2
s for i2 < i, this derivative could be nonzero just

because W̄ ı̃,i2
s̃,s �= 0.

We use the identities in (A.1), (A.3), and (A.4) to simplify all of the sums over
rP in the marginal distribution of RQ given in (3.4). To use these identities, we need
to distinguish all of the subsets of the various s indicies that could correspond to a
hidden node. We do this by enumerating all of the possible ways in which each s index
could be either a hidden or a measured node, as well as all of the possible ways in
which hidden node indices in a given term could correspond to the same node. Hence
each term in (3.4) will be expanded into many different terms.

However, due to the identities in (A.3), most terms involving derivatives of hidden
nodes disappear. Recall that a derivative of P̄s represents a connection onto node s. A
connection onto a hidden node p should not directly affect the marginal distribution
of the measured nodes RQ; such a connection should have an effect only through
a connection from that hidden node onto a measured node. Indeed, the only place
where derivatives of hidden nodes survive is in the last term:

1

2

∑
rP

∑
s1,s2,s̃1,s̃2

s2 �=s1,s̃1 �=s1
s̃2 �=s2

∑
ı̃1 ,̃ı2

∂P̄s1

∂rı̃1s̃1

∂P̄s2

∂rı̃2s̃2
rı̃1s̃1r

ı̃2
s̃2

∏
s3

s3 �=s1
s3 �=s2

P̄s3 .
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If we set s1 to a hidden node s1 = p1, then by identity (A.4), the term will survive
only if s̃2 also corresponds to the same hidden node s̃2 = p1 and if ı̃2 corresponds to
an earlier time ı̃2 < ı̃1. If we then tried to set s2 to another hidden node s2 = p2,
we would need the contradictory condition of ı̃2 > ı̃1 for the term to survive. In this
case, we must set s2 to a measured node s2 = q2. Hence, with these substitutions, the
term represents the cascade of the effect of a connection from node s̃2 (which could
be hidden or measured) onto hidden node p1 combined with the effect of a connection
from hidden node p1 onto measured node q2. (We must double the effect of this term
because we could swap s1 and s2 and obtain the same result.)

In all other cases, only the effects of connections onto measured nodes survive. The
connections from measured and hidden nodes must still be distinguished. We describe
this process in [14] as identifying all possible subnetworks of two or fewer edges. When
this process is completed, we end up with the following lengthy expression:

Pr(RQ = rQ|X = x) =
∏
q

P̄q +
∑
q1,q̃1
q1 �=q̃1

∑
ı̃1

∂P̄q1

∂rı̃1q̃1
rı̃1q̃1

∏
q2

q2 �=q1

P̄q2

+
∑
q1,p̃1

∑
ı̃1

∂P̄q1

∂rı̃1p̃1

Ē0(R
ı̃1
p̃1

)
∏
q2

q2 �=q1
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+
1

2

∑
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Ē0

(
∂Rı̃1

p̃1

∂Rı̃2
p̃2

)
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∏
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P̄q3 + O(W̄ 3).(A.5)

A.2. Obtaining an effective parameter equation. We obtained (A.5) for
Pr(RQ|X) by averaging the full model (2.2) over the activity of all hidden nodes.
The averaged model (2.3) is equivalent to the full model (2.2) averaged over the
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activity of all nodes except for a single node s. Hence, the averaged model (2.3) must
be equal to (A.5) for Pr(RQ|X) where the set Q of measured nodes is replaced by the
single node s.

Given definition (3.5) for the effective probability distribution Ps, we obtain

Ps = Pr(Rs = rs|X = x)

= P̄s +
∑
s̃1

s̃1 �=s

∑
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)
Ē0(R

ı̃2
s̃2

)

+
∑
s̃1

s̃1 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂P̄s

∂rı̃1s̃1
Ē0

(
∂Rı̃1

s̃1

∂Rı̃2
s

)
rı̃2s + O(W̄ 3),(A.6)

where we simply replaced all variations of q in (A.5) with s and replaced the p̃ in (A.5)
with the corresponding s̃. Equation (A.6) relates the effective parameters θ (hidden in
P ) to the original model parameters θ̄ (hidden in P̄ ). Since, by assumption, we have
an algorithm to determine the effective parameters θ (at least for measured nodes),
we want to be able to rewrite everything in terms of the effective parameters. To
accomplish this, we need an expression for the original model parameters θ̄ in terms
of the effective parameters θ.

Recall that each derivative with respect to r implicitly includes a factor of W̄ .
Hence (A.6) shows that Ps deviates from P̄s by an amount that is O(W̄ ). Since we
are computing only a second-order approximation in W̄ , we can replace P̄s with Ps

in any terms that are second-order in W̄ (i.e., contain two derivatives with respect to
r) without affecting the order of our approximation. Similarly expressions with E0

differ by the equivalent expressions with Ē0 by an amount that is O(W̄ ) (compare
(3.7) with (A.2) and (A.4)), so we can also replace Ē0 with E0 in terms that are
second-order in W̄ . Then (A.6) becomes (after solving for P̄s)

P̄s = Ps −
∑
s̃1

s̃1 �=s

∑
ı̃1

∂P̄s

∂rı̃1s̃1
Ē0(R

ı̃1
s̃1

)

− 1

2

∑
s̃1,s̃2

s̃1 �=s,s̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1s̃1∂r
ı̃2
s̃2

E0(R
ı̃1
s̃1
Rı̃2

s̃2
)

−
∑
s̃1,s̃2

s̃1 �=s,s̃2 �=s
s̃1 �=s̃2

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1s̃1
E0

(
∂Rı̃1

s̃1

∂Rı̃2
s̃2

)
E0(R

ı̃2
s̃2

)

−
∑
s̃1

s̃1 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1s̃1
E0

(
∂Rı̃1

s̃1

∂Rı̃2
s

)
rı̃2s + O(W̄ 3).(A.7)
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To write the right-hand side of (A.7) solely in terms of effective parameters θ, we
need to change only the sum from the first line. Since this sum is O(W̄ ), we need
approximations to ∂P̄s/∂r

ı̃1
s̃1

and Ē0(R
ı̃1
s̃1

) that are accurate to first order in W̄ . We

start with the first-order approximation of P̄s (the first line of (A.7)):

P̄s = Ps −
∑
s̃1

s̃1 �=s

∑
ı̃1

∂Ps

∂rı̃1s̃1
E0(R

ı̃1
s̃1

) + O(W̄ 2).(A.8)

Here we could replace P̄s and Ē0 with Ps and E0 in the terms that are first-order in
W̄ , since we are computing only a first-order approximation.

When we differentiate P̄s with respect to rı̃2s̃2 , we are, by (3.6), essentially differ-

entiating with respect to the W̄ ı̃2,i
s̃2,s

. Hence, if we differentiate the left-hand side of

(A.8) with respect to rı̃2s̃2 , we need to differentiate only those terms on the right-hand

side of (A.8) that are functions of Ps or P̄s. We obtain the following expression for
the derivative ∂P̄s/∂r

ı̃2
s̃2

in terms of effective parameters:

∂P̄s

∂rı̃2s̃2
=

∂Ps

∂rı̃2s̃2
−
∑
s̃1

s̃1 �=s

∑
ı̃1

∂2Ps

∂rı̃1s̃1∂r
ı̃2
s̃2

E0(R
ı̃1
s̃1

) + O(W̄ 2).(A.9)

To find an expression for Ē0(R
ı̃1
s̃1

) in terms of effective parameters, we simplify
its definition based on (A.2) to

Ē0(R
ı̃1
s̃1

) =
∑
rs̃1

rı̃1s̃1 P̄s̃1 .

We similarly simplify the definition of E0(R
ı̃1
s̃1

) (based on (3.7a)) to

E0(R
ı̃1
s̃1

) =
∑
rs̃1

rı̃1s̃1Ps̃1 .

Then, by using (A.8) along with (3.7b), we can write Ē0(R
ı̃1
s̃1

) as

Ē0(R
ı̃1
s̃1

) =
∑
rs̃1

rı̃1s̃1 P̄s̃1

=
∑
rs̃1

rı̃1s̃1Ps̃1 −
∑
rs̃1

∑
s̃2

s̃2 �=s̃1

∑
ı̃2

rı̃1s̃1
∂Ps̃1

∂rı̃2s̃2
E0(R

ı̃2
s̃2

) + O(W̄ 2)

= E0(R
ı̃1
s̃1

) −
∑
s̃2

s̃2 �=s̃1

∑
ı̃2

ı̃2<ı̃1

E0

(
∂Rı̃1

s̃1

∂Rı̃2
s̃2

)
E0(R

ı̃2
s̃2

) + O(W̄ 2).(A.10)
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We substitute (A.9) and (A.10) into the first line of (A.7) and obtain the following
second-order expression of P̄s in terms of effective parameters:

P̄s =Ps −
∑
s̃1

s̃1 �=s

∑
ı̃1

∂Ps

∂rı̃1s̃1
E0(R

ı̃1
s̃1

)

− 1

2

∑
s̃1,s̃2

s̃1 �=s,s̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1s̃1∂r
ı̃2
s̃2

[E0(R
ı̃1
s̃1
Rı̃2

s̃2
) − 2E0(R

ı̃1
s̃1

)E0(R
ı̃2
s̃2

)]

−
∑
ŝ2

ŝ2 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1ŝ2
E0

(
∂Rı̃1

ŝ2

∂Rı̃2
s

)
[rı̃2s − E0(R

ı̃2
s )].

Since for s̃1 �= s̃2, E0(R
ı̃1
s̃1
Rı̃2

s̃2
) = E0(R

ı̃1
s̃1

)E0(R
ı̃2
s̃2

), we can simplify this expression to
obtain (3.8).

A.3. Measured node activity in terms of effective parameters. Equation
(A.5) for Pr(RQ|X), the probability distribution of the measured node activity, is
given in terms of the original model parameters θ̄. Our next step is to use (3.8) to
rewrite (A.5) in terms of effective parameters θ.

First, we rewrite (3.8) to replace the sums over all nodes in the network by two
sums: one over the measured nodes and one over the hidden nodes. Recall that we
use q (and its variants) to denote measured node indices and p (and its variants) to
denote hidden node indices (i.e., implicitly restrict q ∈ Q and p ∈ P).

P̄s = Ps −
∑
q̃1

q̃1 �=s

∑
ı̃1

∂Ps

∂rı̃1q̃1
E0(R

ı̃1
q̃1

) −
∑
p̃1

p̃1 �=s

∑
ı̃1

∂Ps

∂rı̃1p̃1

E0(R
ı̃1
p̃1

)

− 1

2

∑
q̃1

q̃1 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1q̃1∂r
ı̃2
q̃1

[E0(R
ı̃1
q̃1
Rı̃2

q̃1
) − E0(R

ı̃1
q̃1

)E0(R
ı̃2
q̃1

)]

− 1

2

∑
p̃1

p̃1 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1p̃1
∂rı̃2p̃1

[E0(R
ı̃1
p̃1
Rı̃2

p̃1
) − E0(R

ı̃1
p̃1

)E0(R
ı̃2
p̃1

)]

−
∑
q̃1

q̃1 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1q̃1
E0

(
∂Rı̃1

q̃1

∂Rı̃2
s

)
[rı̃2s − E0(R

ı̃2
s )]

−
∑
p̃1

p̃1 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1p̃1

E0

(
∂Rı̃1

p̃1

∂Rı̃2
s

)
[rı̃2s − E0(R

ı̃2
s )]

+
1

2

∑
q̃1,q̃2

q̃1 �=s,q̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1q̃1∂r
ı̃2
q̃2

E0(R
ı̃1
q̃1

)E0(R
ı̃2
q̃2

)

+
∑
q̃1,p̃2

q̃1 �=s,p̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1q̃1∂r
ı̃2
p̃2

E0(R
ı̃1
q̃1

)E0(R
ı̃2
p̃2

)

+
1

2

∑
p̃1,p̃2

p̃1 �=s,p̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1p̃1
∂rı̃2p̃2

E0(R
ı̃1
p̃1

)E0(R
ı̃2
p̃2

) + O(W̄ 3).(A.11)
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The first term on the right-hand side of (A.5) for Pr(RQ|X) is
∏

q P̄q. This is the

only term that is zeroth-order in W̄ and so is the only term where we need a second-
order conversion from original paremeters θ̄ to effective parameters θ. We derive a
second-order approximation of

∏
q P̄q by taking the product of (A.11) (ignoring terms

that are third- or higher-order in W̄ ) and substitute this expression into (A.5). We
use a first-order approximation of P̄s, Ē0(R

i
s) (A.10), and ∂P̄s/∂r

ı̃
s̃ (A.9) to rewrite

the first-order terms of (A.5) in terms of effective parameters. After simplification,
(A.5) becomes

Pr(RQ = rQ|X = x) =
∏
q

Pq +
∑
q1,q̃1
q1 �=q̃1

∑
ı̃1

∂Pq1

∂rı̃1q̃1
[rı̃1q̃1 − E0(R

ı̃1
q̃1

)]
∏
q2

q2 �=q1

Pq2

+
∑

q1,p̃1,q̃2
q̃2 �=q1

∑
ı̃1 ,̃ı2
ı̃1>ı̃2

∂Pq1

∂rı̃1p̃1

E0

(
∂Rı̃1

p̃1

∂Rı̃2
q̃2

)
[rı̃2q̃2 − E0(R

ı̃2
q̃2

)]
∏
q2

q2 �=q1

Pq2

+
1

2

∑
q1,p̃1,q2
q2 �=q1

∑
ı̃1 ,̃ı2

∂Pq1

∂rı̃1p̃1

∂Pq2

∂rı̃2p̃1

[E0(R
ı̃1
p̃1
Rı̃2

p̃1
) − E0(R

ı̃1
p̃1

)E0(R
ı̃2
p̃1

)]
∏
q3

q3 �=q1,q3 �=q2

Pq3

− 1

2

∑
q1,q̃1
q1 �=q̃1

∑
ı̃1 ,̃ı2

∂2Pq1

∂rı̃1q̃1∂r
ı̃2
q̃1

[E0(R
ı̃1
q̃1
Rı̃2

q̃1
) − E0(R

ı̃1
q̃1

)E0(R
ı̃2
q̃1

)]
∏
q2

q2 �=q1

Pq2

−
∑
q1,q̃1
q̃1 �=q1

∑
ı̃1 ,̃ı2
ı̃1>ı̃2

∂Pq1

∂rı̃1q̃1
E0

(
∂Rı̃1

q̃1

∂Rı̃2
q1

)
[rı̃2q1 − E0(R

ı̃2
q1)]

∏
q2

q2 �=q1

Pq2

+
1

2

∑
q1,q̃1,q2,q̃2

q2 �=q1,q̃1 �=q1
q̃2 �=q2

∑
ı̃1 ,̃ı2

∂Pq1

∂rı̃1q̃1

∂Pq2

∂rı̃2q̃2
[rı̃1q̃1 − E0(R

ı̃1
q̃1

)][rı̃2q̃2 − E0(R
ı̃2
q̃2

)]
∏
q3

q3 �=q1,q3 �=q2

Pq3

+
1

2

∑
q1,q̃1,q̃2

q1 �=q̃1,q1 �=q̃2

∑
ı̃1 ,̃ı2

∂2Pq1

∂rı̃1q̃1∂r
ı̃2
q̃2

[rı̃1q̃1 − E0(R
ı̃1
q̃1

)][rı̃2q̃2 − E0(R
ı̃2
q̃2

)]
∏
q2

q2 �=q1

Pq2 + O(W̄ 3).

(A.12)

A.4. Transforming back to probability distribution. Equation (A.12) is a
second-order approximation to a probability distribution, but it is not exactly a prob-
ability distribution. Since we wish to use Pr(RQ|X) to compute maximum likelihood
estimators of coupling parameters (i.e., find values of certain parameters that maxi-
mize Pr(RQ|X)), we need to use an expression for Pr(RQ|X) that is a true probability
distribution. For most terms of (A.12), one can simply reverse the Taylor expansion
to pull terms back into the product of Pq.

However, one cannot simply reverse the Taylor expansion for the common input
terms, i.e., the third line (common input from a hidden node onto two measured nodes)
and the fourth line (“common input” from a measured node onto a single measured
node). For those two terms, we’ll need to tease apart the effects from different time
points. We use the notation defined in (3.9) for P i

s , the probability distribution at a
single time point i (as well as its second derivative, defined analogously by (3.9)). We
rewrite the derivatives with respect to r in terms of the P i

s and its derivatives. We
also separate out the common input effects at a single time point, rewriting the third
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and fourth lines of (A.12) as9

+
1

2

∑
q1,p̃1,q2
q2 �=q1

∑
ı̃1 ,̃ı2

∂Pq1

∂rı̃1p̃1

∂Pq2

∂rı̃2p̃1

[E0(R
ı̃1
p̃1
Rı̃2

p̃1
) − E0(R

ı̃1
p̃1

)E0(R
ı̃2
p̃1

)]
∏
q3

q3 �=q1,q3 �=q2

Pq3

− 1

2

∑
q1,q̃1
q1 �=q̃1

∑
ı̃1 ,̃ı2

∂2Pq1

∂rı̃1q̃1∂r
ı̃2
q̃1

[E0(R
ı̃1
q̃1
Rı̃2

q̃1
) − E0(R

ı̃1
q̃1

)E0(R
ı̃2
q̃1

)]
∏
q2

q2 �=q1

Pq2

=
∑

q1,p̃1,q2
q2 �=q1

∑
ı̃1 ,̃ı2

∑
ı̂1 ,̂ı2
ı̂2<ı̂1

W̄ ı̃1 ,̂ı1
p̃1,q1

W̄ ı̃2 ,̂ı2
p̃1,q2

∂P ı̂1
q1

∂w

∂P ı̂2
q2

∂w
[E0(R

ı̃1
p̃1
Rı̃2

p̃1
) − E0(R

ı̃1
p̃1

)E0(R
ı̃2
p̃1

)]

∏
q3
Pq3

P ı̂1
q1P

ı̂2
q2

+
1

2

∑
q1,p̃1,q2
q2 �=q1

∑
ı̃1 ,̃ı2

∑
ı̂1

W̄ ı̃1 ,̂ı1
p̃1,q1

W̄ ı̃2 ,̂ı1
p̃1,q2

∂P ı̂1
q1

∂w

∂P ı̂1
q2

∂w
[E0(R

ı̃1
p̃1
Rı̃2

p̃1
) − E0(R

ı̃1
p̃1

)E0(R
ı̃2
p̃1

)]

∏
q3
Pq3

P ı̂1
q1P

ı̂1
q2

−
∑
q1,q̃1
q1 �=q̃1

∑
ı̃1 ,̃ı2

∑
ı̂1 ,̂ı2
ı̂2<ı̂1

W̄ ı̃1 ,̂ı1
q̃1,q1

W̄ ı̃2 ,̂ı2
q̃1,q1

∂P ı̂1
q1

∂w

∂P ı̂2
q1

∂w
[E0(R

ı̃1
q̃1
Rı̃2

q̃1
) − E0(R

ı̃1
q̃1

)E0(R
ı̃2
q̃1

)]

∏
q3
Pq3

P ı̂1
q1P

ı̂2
q1

− 1

2

∑
q1,q̃1
q1 �=q̃1

∑
ı̃1 ,̃ı2

∑
ı̂1

W̄ ı̃1 ,̂ı1
q̃1,q1

W̄ ı̃2 ,̂ı1
q̃1,q1

∂2P ı̂1
q1

∂w2
[E0(R

ı̃1
q̃1
Rı̃2

q̃1
) − E0(R

ı̃1
q̃1

)E0(R
ı̃2
q̃1

)]

∏
q3
Pq3

P ı̂1
q1

.

The last line in the above equation corresponds to the second-order effect of a
single connection between two measured nodes. For this term, we cannot reverse
the Taylor expansion to fold the term back into the product of the Pq and create a
probability distribution. However, this term represents a second-order effect that is
not summed over all nodes of the network (it is simply summed over the measured
nodes, which we view as a small subset). If we modify our weak coupling assumption
to allow us to ignore second-order terms that are not summed over all nodes, we can
neglect this last term. Since we no longer have exactly a second-order approximation
in W̄ , we denote the approximation by ≈.

With this approximation, we can reverse the Taylor expansion of the remaining
terms of (A.12) and obtain (3.10) for Pr(RQ|X), which is written as a probability
distribution in terms of effective parameters.

Appendix B. Estimation of single-node parameters. We sketch our al-
gorithm for determining the single-node parameters θis of model (4.2) that we used
to analyze the results of our simulations. The parameters θis correspond to As, ys,
hhist,s, and hext,s. We calculated maximum likelihood estimators of these parameters
from measurements of Ri

s, the spikes of neuron s, and the stimulus X.
We chose our form (4.2) of λs(·) so that λs(·) is convex and log λs(·) is concave

as a function of ys, hhist,s, and hext,s. In this way, for a fixed As, the log-likelihood
surface (logarithm of (2.3)) is free of nonglobal local maxima [17], and we could use
standard gradient ascent algorithms to find the maximum, conditioned on a value of
As. (We used the Polak–Ribiere conjugate gradient algorithm as implemented in the
GNU Scientific Library [6].)

9Note that all of the probabilities P i
q that appear in a denominator are also a factor in the

corresponding numerator. If a P i
q that appears in a denominator were to be zero, one could still

define the ratio by canceling the factor in the numerator.
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Before calculating these maximum likelihood estimators, we calculated the abso-
lute refractory period τabsref

s as the minimum number of Δt = 1 ms time bins observed
between spikes. Then, so that our model predicts absolutely no firing for τabsref

s time
steps after each spike, we set hi

hist,s = −10100 for i ≤ τabsref
s . To reduce the dimension

of the parameter space, we restricted the remainder of the history kernel hhist,s to be
in the subspace spanned by the vectors

Bk
s,1(i) = sin

(
πk

[
2
i− τabsref

s

τs,1
−
(
i− τabsref

s

τs,1

)2
])

for 0 < i− τabsref
s < τs,1 and Bk

s,1(i) = 0 otherwise. (These vector are not orthogonal,
so we applied Gram–Schmidt orthonormalization to obtain basis vectors.) We set
τs,1 = 60 − τabsref

s time bins. These basis vectors are analagous to those used in [8];
they can represent fine temporal structure for the time immediately after the spike
but are smoother for longer time scales. We used 29 basis vectors 1 ≤ k ≤ 29 (viewing
the 30th basis vector as capturing the absolute refractory period).

We similarly reduced the dimension of hext,s by using basis vectors that are a
product of a Hartley basis function in space (to match the stimulus) and temporal
basis functions similar to the Bk

s,1. The basis function indexed by k and l evaluated
at time bin i and space bin j was based on

Bk,l
s,2(i, j) = cas(2πlj/N0) sin

(
πk

[
2i/τs,2 − (i/τs,2)

2
])

for 0 < i < τs,2 and Bk,l
s,2(i, j) = 0 otherwise (again, we obtained orthogonal basis

functions through Gram–Schmidt orthonormalization). As in the definition of the
stimulus (section 4.1.1), casx = cosx + sinx and N0 = 100. We set τs,1 = 200 time
bins. We used the 210 basis vectors −10 ≤ l ≤ 10 and 1 ≤ k ≤ 10.

As mentioned above, we calculated y0 and the coefficients of the basis functions to
maximize the log-likelihood, given a fixed value of As. This defines all parameters as
a function of As. We then search for a value of As that maximizes the log-likelihood
while keeping the other parameters set at this function of As. We use this procedure
since the log-likelihood surface may not be well-behaved as a function of As.

Recall that the causal connection measure W and the common input measure U
are maximum likelihood estimators based on (3.15), which depends on these values of
θis. To reduce bias at this stage, we calculate the θis using cross-validation. We divided
the data into 4 segments. For each time bin i from one of these segments, we calculated
the parameters θiq using only the data in the other 3 segments. (For computation
efficiency, we don’t recalculate As four times but base As from calculations using all
of the data.)

Appendix C. Monte Carlo estimates of single-node expected values.
The estimation of connectivity parameters is based on (3.15) for Pr(RQ|X), the prob-
ability distribution of measured node activity. Once the effective parameters θq of the
measured nodes have been estimated, the only unknown quantities in (3.15) are the
causal connection W and common input U parameters. However, some of the known
quantities are given as expected values of functions of the measured node activities as
predicted by the averaged model (2.3). Although these expected values are completely
determined by the averaged model and the known effective parameters θq, computing
them explicitly would be impractical, as one would need to enumerate all possible
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sequences of the history of each node and average over them all.10 Instead, for each
measured node, we use the averaged model (2.3) to randomly generate sequences of
activity in order to estimate these expected values using Monte Carlo.

There are three different expected values that appear in (3.15b). They are the
average activity E0(R

i
q) at a given time bin, the second moment E0(R

i
qR

i−j
q ), and the

expected value involving the derivative E0(R
i
q(∂P

i−j
q /∂w)/P i−j

q ). To estimate these
expected values via Monte Carlo, we randomly generate a sequence Rq of the activity
of the node from the averaged model (2.3). Then, at each time point i (ignoring initial
time points for which we don’t have enough preceeding history), we make a sample
estimate of each expected value, as described below. We repeat this process 1000
times, setting our final estimates to be averages of these 1000 samples.

To compute the average activity E0(R
i
q), we could simply record the sampled Ri

q

and average these. However, we improve our estimate by taking advantage of the fact
that we have an analytic expression for the mean of Ri

q conditioned on the history R<i
q

(for the Poisson distribution it is simply λq(R
<i
q ,x, 0; θiq)). Our estimate of E0(R

i
q) is

the average of such conditioned means.
In our examples, we use the Poisson distribution (section 3.4) for the probability

distribution Pq(R
i
q,R

<i
q , ·) of Ri

q conditioned on the history R<i
q . However, one must

remember that Ri
q no longer has a probability distribution of the form Pq(R

i
q,R

<i
q , ·)

once one averages over all possible histories. Since Ri
q does not have a Poisson distri-

bution, one must resist the urge to estimate the variance E0((R
i
q)

2)−E0(R
i
q)E0(R

i
q)

as being equal to the mean E0(R
i
q). Instead, one must calculate E0((R

i
q)

2) in the

same manner as that described above for calculating E0(R
i
q). Since we have an ana-

lytic formula for the second moment of Ri
q conditioned on this history R<i

q (for the

Poisson distribution, it is λ2
q + λq), we can estimate E0((R

i
q)

2) as the average of such

conditioned second moments. To estimate E0(R
i
qR

i−j
q ) (for j > 0), we take our ana-

lytic expression for the average of Ri
q conditioned the history R<i

q , multiply it by the

sampled value of Ri−j
q , and average over all samples.

For the derivative term, E0(R
i
q(∂P

i−j
q /∂w)/P i−j

q ), we first look at the j = 0 case.
We can rewrite it as

E0

(
Ri

q

∂P i
q

∂w

1

P i
q

)
=

∑
r<i+1
q

riq
∂P i

q

∂w

1

P i
q

∏
ı̃≤i

P ı̃
q =

∑
r<i+1
q

riq
∂P i

q

∂w

∏
ı̃<i

P ı̃
q ,(C.1)

where the sum is over all possible values of the rkq for k ≤ i. At least for the Poisson

distribution, we can calculate an analytic expression11 for
∑

riq
riq∂P

i
q/∂w, and we

take the average of that quantity over all samples. For j > 0, the term is

E0

(
Ri

q

∂P i−j
q

∂w

1

P i−j
q

)
=

∑
r<i+1
q

riq
∂P i−j

q

∂w

1

P i−j
q

∏
ı̃≤i

P ı̃
q .(C.2)

10Hence, the computational cost would increase exponentially in length of the history that could
affect the activity.

11For the Poisson distribution,
∑

riq
riq∂P

i
q/∂w = ∂wλq(r<i

q ,x, 0; θiq).
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In this case, we take the average value of Ri
q conditioned on the sampled history and

multiply it by (∂P i−j
q /∂w)/P i−j

q . We average this quantity over all samples.12
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