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The effects of hidden nodes can lead to erroneous identification of connections among measured nodes in a
network. For example, common input from a hidden node may cause correlations among a pair of measured
nodes that could be misinterpreted as arising from a direct connection between the measured nodes. We present
an approach to control for effects of hidden nodes in networks driven by a repeated stimulus. We demonstrate
the promise of this approach via simulations of small networks of neurons driven by a visual stimulus.
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I. INTRODUCTION

Determination of the connectivity structure of complex
networks is hindered by one’s inability to simultaneously
measure the activity of all nodes. In experiments probing
networks such as gene regulatory networks, computer net-
works, or neural networks, many hidden nodes could be in-
teracting with the small set of measured nodes and corrupt-
ing estimates of connectivity in unknown ways. For
example, if a hidden node had connections to two measured
nodes, this common input could introduce correlations
among the measured nodes, which might lead one to errone-
ously infer a connection between the measured nodes. Since,
in many applications, one cannot simultaneously measure
more than a tiny fraction of nodes, determining network
structure is a challenge.

We present a promising approach to control for effects of
hidden nodes and estimate connectivity among measured
nodes of stimulus-driven networks. In particular, we can dis-
tinguish between causal connections1 and common input
originating from hidden nodes. Earlier versions �1–3� relied
on models of the relationship between nodal activity and the
stimulus. Our result here exploits a repeated stimulus to
eliminate the need for such a model, greatly broadening the
applicability of the analysis.

II. HISTOGRAM AND HISTORY MODEL

With a repeated stimulus, one can sample a node’s activity
to estimate its probability distribution conditioned on each
stimulus time point. For simplicity, we assume a probability
distribution determined by its mean2 so that one needs only
the average activity at each stimulus time. This average is
analogous to the peristimulus time histogram �PSTH� com-
monly used to capture neurons’ spiking activity as a function
of stimulus time, and we will use the term PSTH as a short-
hand for any such average activity. An important point is that
one can estimate the PSTH without understanding how nodal
activity is related to the stimulus.

We use the framework of Ref. �3� to build a model of the
probability distribution of a node’s activity conditioned not

only on the stimulus, but also on the node’s history and other
nodes’ activity. Let Rs

k,i be the activity of node s at time i
during stimulus repeat k. Ignoring for a moment the influ-
ence of other nodes, we allow the probability distribution of
Rs

k,i to depend on time i �but not explicitly on stimulus repeat
k� and Rs

k,�i, which represents all activity Rs
k,j of node s at

times j� i. For example, if we assume Rs
k,i is a Poisson ran-

dom variable �approximating, for example a point process
�4�� that depends on its history Rs

k,�i linearly, we could write

Pr�Rs
k,i�Rs

k,�i� = ��Rs
k,i,gs�Ps

i + �
j�0

hs
jRs

k,i−j	
 , �1�

where hs
j is a kernel specifying the node’s history depen-

dence, gs�·� is some �typically monotonic� function of its
scalar argument, and

��n,�� =
1

n!
�ne−� �2�

is the Poisson distribution. Since we do not assume a particu-
lar relationship between the stimulus and nodal activity, the
function Ps

i depends arbitrarily on time point i but not on
stimulus repeat k. The dependence of Ps

i on i is chosen so
that the average of Rs

k,i over all stimulus repeats k matches
the PSTH.

We use the term histogram and history �HAH� model to
refer to models that incorporate a dependence of a node’s
activity on its own history and also allow arbitrary depen-
dence on a stimulus to match the PSTH. Model �1� is an
example of a HAH model, specialized to the case where the
expected value of Rs

k,i is a linear function of the model pa-
rameters, except for the nonlinearity gs. Such a nearly linear
model is called a generalized linear model �GLM�.

In a network, a node’s activity could depend on the pre-
vious activity Rk,�i of all nodes. We define the directed graph

of the network by letting W̄s̃,s
j be the �possibly zero� coupling

strength from node s̃ onto node s at delay j. Adding linear
coupling to the linear history in our example �1�, we form the
network HAH model,

1By causal connection, we refer to a directed path between mea-
sured nodes, possibly via one or more hidden nodes.

2Depending on the amount of data, one could also estimate higher
moments or the full conditional probability.
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Pr�Rs
k,i�Rk,�i� = ��Rs

k,i, ḡs�P̄s
i + �

j�0
h̄s

jRs
k,i−j

+ �
s̃�s

�
j�0

W̄s̃,s
j Rs̃

k,i−j	
 , �3�

where we have added bars over quantities to indicate they
will be different from those in �1�.

This analysis is not limited to GLMs such as �1� and �3�,
but can be applied to a more general class of HAH network
models of the form

Pr�Rs
k,i�Rk,�i� = P̄s�Rs

k,i;i,Rs
k,�i,�

s̃�s
�
j�0

W̄s̃,s
j Rs̃

k,i−j	 , �4�

where P̄s is a probability distribution in its first argument that
depends on time point i, the node’s own history Rs

k,�i, and
the total coupling from other nodes summed linearly. �Since

we will assume that the coupling W̄s̃,s
j is a small parameter,

linear coupling will suffice.�
In the following description of the network analysis, we

will leave the formulation of the HAH model generic in �4�.
However, to apply the analysis, one must choose a model
that specifies the dependence of Rs

k,i on history Rs
k,�i, such as

the linear form of �1� and �3�. Since every possible history
vector will not occur multiple times, a model-independent
description of history dependence is unavailable. Nonethe-
less, history dependence is a single-node property, so devel-
opment of suitable models is more tractable than for models
of stimulus dependence �which could depend on the entire
network�.

III. DESCRIPTION OF NETWORK ANALYSIS

Our goal is to estimate the connectivity among measured
nodes in the network despite the presence of hidden nodes.
We assume the activity of each node can be represented by a
model of the form �4�, though the probability distribution
may vary among nodes. If we let R denote the activity of all
nodes s at all stimulus repeats k and all time points i, we can
use Bayes theorem repeatedly to write the probability distri-
bution of R in terms of model �4� as

Pr�R� = �
s,k,i

Pr�Rs
k,i�Rk,�i�

= �
s,k,i

P̄s�Rs
k,i;i,Rs

k,�i,�
s̃�s

�
j�0

W̄s̃,s
j Rs̃

k,i−j	 . �5�

We assumed that for a given time point i and stimulus repeat
k, all nodes were independent conditioned on network his-
tory �i.e., we assumed that all network interactions occur at a
delay of at least one time step�.

Since model �5� contains many hidden nodes, we cannot
determine its parameters. But we can fit a model to all the

activity Rs of a single measured node, such as model �1�.
Using the same formalism as �5�, we can write a generic
HAH model for a single node’s activity Rs as

Pr�Rs� = �
k,i

Pr�Rs
k,i�Rk,�i� = �

k,i
Ps�Rs

k,i;i,Rs
k,�i,0� . �6�

The single-node HAH model �6� is similar to �5�, except that
we have ignored the activity of all nodes except for one
�setting Rs̃

k,i=0 for s̃�s�. Since, of course, the single-node
model will have different parameters, we denoted the change
by removing the bar over the probability distribution.

We assume that the HAH model chosen for �6� is an iden-
tifiable model, meaning that we can identify all of its param-
eters from measurements of the activity of a single node in
response to the stimulus. Since the dependence on time point
i is arbitrary �presumably subject to some smoothness con-
straints�, we imagine the parameters will be chosen so that
the average of the activity Rs

k,i over all stimulus repeats k will
closely approximate the PSTH, hence motivating the use of
the term HAH model. Regardless, the key assumption is that
we can regard all the parameters of �6� as being known for
each measured node, as these parameters can be obtained by
fitting the model to activity of each measured node.

Relying on the previously detailed general procedure �3�,
we just give a brief sketch of the network analysis here. To
proceed with the analysis, we want to link the single node
model �6� to the network model �5�. The left-hand side of �6�
is simply the marginalization of the left-hand side of �5� over
the activity of all other nodes s̃�s. For this reason, we refer
to model �6� as the average model. For consistency, we need
the product of the Ps to approximate the marginalization of

the product of the P̄s.
We can analytically compute the marginalization of �5� if

we assume that the coupling W̄s̃,s
j is weak.3 We expand �5� to

second order in W̄, and explicitly sum over all possible com-
binations of the values of Rs̃

k,i for s̃�s. As detailed in Ref.
�3�, each resulting term depends on the activity Rs̃

k,i in terms
of a polynomial in Rs̃

k,i multiplied by a probability distribu-
tion Ps̃ or its derivative. The sum over all possible values of
Rs̃

k,i can be turned into a combination of moments of the
probability distribution and related quantities. By equating
the result of this analytic �though approximate� marginaliza-
tion of �5� to the average model �6�, we obtain an expression
relating the unknown parameters of �5� to the known param-
eters of �6�.

Although the parameters of the averaged model are not
known for hidden nodes, we perform the above marginaliza-
tion for each node and then rewrite the network model �5� in
terms of the parameters from the averaged model �6�. Then,
we perform yet another marginalization of �5�, this time mar-
ginalizing over the activity of just the hidden nodes. The
result is an expression for the probability distribution of just
the measured nodes, which we write as RQ, where Q denotes

3We assume W̄s̃,s
j is a small parameter scaling with network size N

as 1 /N �2�.
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the set of indices q corresponding to measured nodes. The
resulting probability distribution for measured node activity
RQ is written in terms of the parameters of the averaged
model �6�. Of course, all the parameters corresponding to the
arbitrary number of hidden nodes remain unknown. Since all

the coupling parameters W̄s̃,s
j are also unknown, the param-

eters for the probability distribution of RQ are still underde-
termined.

To close the system, we make one more approximation.
Because we averaged over hidden node activity, the marginal
probability distribution of RQ contains hidden node quanti-
ties only in terms of averages at different stimulus time
points. These hidden node quantities vary with stimulus time
point in unknown ways, as we do not know the structure of
hidden node PSTHs. To simplify the equations, we simply
ignore this unknown PSTH structure. Mathematically, the
approximation is assuming all the hidden node PSTHs are
flat, though one can justify this approximation with a weaker
assumption that hidden node PSTH structure differs signifi-
cantly from the PSTH structure of the measured nodes �2�.
By ignoring the PSTH structure of hidden nodes, the aver-
aged quantities from the hidden nodes no longer depend on
the stimulus time point. This reduces the number of unknown
quantities to a tractable number because it turns out that we
can group all remaining hidden node quantities into two ef-
fective quantities.

The first hidden node quantity represents common input
from hidden nodes onto a pair of measured nodes. Although
common input could arise from an unspecified number of
hidden nodes, the above approximation allows us to lump all
of such effects into the common input measure that we de-
note by Uq̃,q

j . The measure Uq̃,q
j is a sum over the average

effect of common input connections W̄pq̃
j̃−j and W̄pq

j̃ from hid-
den nodes p. These common input connections create a cor-
relation between the activity Rq

k,i of node q and the activity
Rq̃

k,i−j of node q̃ with a delay of j.
The second way that hidden nodes can create correlation

among measured nodes is through an indirect chain of con-
nections from one measured node q̃ to hidden node p �i.e.,

W̄q̃p
j̃1 � and then from hidden node p onto a second measured

node q �i.e., W̄pq
j̃2 �. We refer to such a chain of connections as

consisting of a causal connections from node q̃ to node q.
When we ignore the PSTH structure of hidden nodes, such
indirect causal connections via hidden nodes appear in the
probability distribution of RQ in exactly the same way as do

the direct causal connections from q̃ to node q �i.e., W̄q̃q
j �.

Therefore, we cannot distinguish direct and indirect causal
connections, and the second lumped quantity involving hid-
den nodes includes the direct causal connection along with
the sum of all indirect causal connections via hidden nodes.

�Since we computed only up to quadratic terms in the W̄, the
approximation captures just causal chains of two links.� We
denote this total causal connection quantity by Wq̃q

j , where
the absence of the overbar indicates that it is an effective
parameter.

We end up with the following expression for the marginal
probability distribution of the activity RQ of measured
nodes:4

Pr�RQ� = �
q,k,i

Pr�Rq
k,i�RQ

k,�i� � �
q,k,i

Pq�Rq
k,i;i,Rq

k,�i,W̃q
k,i� ,

�7a�

where

W̃q
k,i = �

q̃�q
�
j�0

Wq̃,q
j �Rq̃

k,i−j − PSTHq̃
i−j�

+ �
q̃�q

�
j�0

Uq̃,q
j

�Pq̃
k,i−j

�w

1

Pq̃
k,i−j . �7b�

We let RQ
k,�i represent previous activity of just the measured

nodes and use the notation convention that indices q and q̃
correspond only to measured nodes. PSTHq̃

i is the PSTH of
node q̃ at time i �i.e., the expected value of Rq̃

k,i, which is
independent of stimulus repeat k�. We also used the short-
hand notation for quantities from the averaged model �6�

Pq
k,i = Pq�Rq

k,i;i,Rq
k,�i,0� ,

�Pq
k,i

�w
=

�

�w
�Pq�Rq

k,i;i,Rq
k,�i,w��w=0.

Note that �7� employs the averaged model �6� so that av-

erage effects of connections are included even when W̃=0.

The factor W̃q
i represents deviations from the average that

induce correlations between node q and the other measured
nodes q̃. Given a determination of the Pq

i from fitting the
averaged model �6� for each measured node q, the only un-
knowns are the W and U. We use the logarithm of �7� to find
maximum likelihood estimates of W and U.

More intuition behind the difference between W and U
can be obtained by specializing to the case where the prob-
ability distribution Pq is a Poisson distribution �2�. If
Pq�Rq

k,i ; i ,Rq
k,�i ,w�=��Rq

k,i ,�q
i �Rq

k,�i ,w��, then we can re-

write the expression for W̃ as5

W̃q
i = �

q̃�q
�
j�0

Wq̃,q
j �Rq̃

k,i−j − PSTHq̃
i−j� + �

q̃�q
�
j�0

Uq̃,q
j �Rq̃

k,i−j

− �q̃
i−j�Rq̃

k,�i−j,0��
��/�w��q̃

i−j��Rq̃
k,�i−j,w��w=0

�q̃
i−j�Rq̃

k,�i−j,0�
. �8�

For a Poisson random variable, one can read out two dif-
ferences between the coefficients of the causal connection
factor W and the common input factor U in �8� that enable
distinction between W and U. The first difference appears in
the square brackets and captures how history dependence has
a different effect on causal connections than on common
input. If there is a causal connection, any deviation of the
activity of node q̃ from its average �the PSTH� is felt by node

4Compare Eq. �3.15� of Ref. �3�. We ignore terms quadratic in W
to facilitate computations. We set Uq̃,q

0 =0 for q̃�q.
5Compare Eq. �3.17b� of Ref. �3�.
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q. On the other hand, if there is only common input from a
hidden node, the activity of node q̃ is not transmitted to node
q. Activity of node q̃ that can be predicted by its history
dependence does not reflect activity of the common input
node and has no effect on node q. Such activity is canceled
out by �q̃

i−j�Rq̃
k,�i−j ,0�. See Ref. �3� for details.

The second difference is the final factor of �8�. The HAH
model captures how the stimulus modulates with time i both
the average activity �q̃

i �Rq̃
k,�i ,0� and the influence of inputs

�� /�w��q̃
i ��Rq̃

k,�i ,w��w=0. The final factor of �8� reflects how a
causal connection has a different temporal modulation than
common input �which depends on node q̃’s response to in-
puts�. This difference exists as long as the common input
node’s PSTH differs from the measured nodes’ PSTHs. See
Ref. �2� for details in a general, model-dependent context.

IV. DEMONSTRATION OF RESULTS

To demonstrate the capabilities and limitations of our ap-
proach, we simulate small networks of neurons and attempt
to distinguish between a direct connection and common in-
put from an unmeasured neuron. In contrast to previous
implementations �1–3�, the HAH-based analysis allows us to
simulate neurons with relatively complicated stimulus-
dependence without concern for a method to reconstruct the
model. We let Xi represent a two-dimensional visual stimulus
at time i, and use a subunit model of a visual neuron analo-
gous to the energy model along with divisive normalization
�5�. We use a binary random variable where Rs

k,i=1 corre-
sponds to a spike of neuron s in time bin i and stimulus
repeat k. The simulated model is

Pr�Rs
k,i = 1�Rk,�i� = As
 �

j=1

4

Is,j
i

1 + �
j=5

8

Is,j
i

+ �
s̃,j

W̄s̃s
j Rs̃

k,i−j�
+

2

where Is,j
i =Bj�hs,j �Xi�+, where � represents convolution, and

�y�+=max�y ,0�. We used Gabor functions for the stimulus
kernels hs,j where the phases of each set of four kernels were
in quadrature and the angle of the suppressive kernels in the
denominator was orthogonal to that of the numerator
kernels.6 In this way, the neurons had a fundamentally non-
linear response to the stimulus. Note that this model has a
fairly linear dependence on spike history which is exactly the

same form as the interneuronal coupling �the final sum in-
cludes self-coupling W̄ss terms�.7

We reconstruct the circuitry with HAH models of GLM
form �1�, using binary random variables with mean
�q

i �Rq
k,�i ,w�=gq�Pq

i +� jhq
j Rq

k,i−j +w� where gq�y�=Cq ln�1
+ey+dq�. For each measured neuron, we compute maximum
likelihood fits of the average model �1� to determine Cq, dq,
Pq

i , and hq
i .8

In the first set of simulations, we let the stimulus be 100
repetitions of a 5 s sequence of random sinusoidal gratings
�6� where a new grating was randomly selected every
50 ms.9 �We view each time point as 1 ms.� We set the As so
that each neuron fired 15 to 20 spikes /s, obtaining 7000–
9000 spikes per neuron.

We simulated two networks under these conditions. The
first contained two neurons where neuron 2 had a direct con-
nection onto neuron 1. The second network contained three
neurons where neuron 3 had common input connections onto
the other two. Note that neuron 3 is unmeasured; we discard
its spikes and analyze the spikes of just the first two neurons.
The correlation between neurons 1 and 2 appears identical
for both networks �Fig. 1�. However, our new causal connec-
tion factor W picks out the direct connection �Fig. 1�a�� and
the common input factor U picks out the common input �Fig.
1�b��. We successfully controlled for common input from a
neuron that remained unmeasured.

The rich random grating stimulus creates PSTHs with sig-
nificant structure �see Fig. 3�a��, which is ideal for this analy-
sis. It also reduces the chance that the PSTH of an unmea-
sured neuron matches the measured neurons. Since the
neurons had strong history dependence, the HAH model
could exploit both stimulus-dependent and history-dependent
effects to distinguish the circuitry.

As a further test, we stimulated the same networks for
2 min with a simple stimulus: a grating drifting at 5 Hz.10

We adjusted parameters so that all neurons fired at about 30
to 40 spikes per second, obtaining 4000–5000 spikes per
neuron. The model neurons responded with little temporal
modulation �see PSTH of Fig. 3�b��, so that our analysis
could not exploit significant stimulus dependence to distin-
guish circuitry. Nonetheless, strong history-dependent effects

6At each position z= �z1 ,z2� and delay of t time steps, the kernel
hs,j was proportional to t exp�−t /�h− �z�2 /2�s,j

2 �cos�ks,j ·z+	s,j�
with ks,j =2
fs,q�cos �s,j , sin �s,j�. The kernels were normalized so
that h ·X had unit variance �random gratings� or were unit vectors
�drifting gratings�. We set �h=40, �1,j =15, �2,j =20, �3,j =10, f1,j

=0.4 /�1,j, f2,j =0.3 /�2,j, f3,j =0.5 /�3,j, for j=1, . . . ,8; 	s,1=	s,5

=0, 	s,2=	s,6=
 /2, 	s,3=	s,7=
, 	s,4=	s,8=3
 /2, �1,j =0, �2,j

=
 /4, �3,j =
 /2, �s,j+4=�s,j +
 /2, Bj =1 for s=1,2 ,3 and j
=1, . . . ,4; Bj =0.2 for j=5, . . . ,8.

7We set the self-coupling terms W̄ss
j =−� for an absolute refractory

period of �s
ref, after which we set W̄ss

j =−as
histe−j/�s

hist
. We let �1

ref=2,
�2

ref=3, �3
ref=1, �1

hist=10, �2
hist=12, �3

hist=6, a1
hist=5, a2

hist=3, and
a3

hist=2. In some simulations, we divided all as
hist by 5. The inter-

neuronal coupling was of the form W̄s̃s
j =as̃s��j−ds̃s�2 /�w

3 �e−�j−ds̃s�/�w

for j�ds̃s and zero otherwise. We set �w=2, d21=d32=0, and d31

=4. We set a21=2 for direct connection networks. For common
input networks, we set a31=a32=6 �random gratings� or a31=a32

=7 �drifting gratings�. Other as̃s=0.
8Although we do not exactly fit to the PSTH, the average of gq�·�

over stimulus repeats does converge to the PSTH.
9Each grating was on a 100
100 grid and was of the form

��1 /100�cas�2
k ·z /100� where cas y=cos y+sin y, k= �k1 ,k2�,
and kj � �−5, . . . ,5�.

10We carefully selected the spatial frequency and orientation of
the grating so that each neuron responded, setting �=0.005, k
= �k1 ,k2�, k1=k0 cos�	�, k0 sin�	�, 	=
 /4, and k0=0.033.
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allowed the analysis to still distinguish the direct connection
�Fig. 2�a�� as well as hidden common input �Fig. 2�b��.

However, if we reduced the history-dependence of the
model neurons by a factor of 5 and stimulated with the
simple drifting grating, the analysis could not correctly dis-
tinguish the hidden common input �Fig. 3�c��. All neurons’
PSTHs were similar with little structure, and the analysis
could exploit neither stimulus dependence nor history depen-
dence well enough to correctly determine network connec-
tivity. We conclude that one should not apply this analysis to
networks driven by a simple stimulus unless one has strong
history dependence �for a point process, this means a strong
deviation from a Poisson process�. If one reduces the history
dependence but uses the rich random grating stimulus, the
analysis can still distinguish the common input network �not
shown�.

V. CONCLUSIONS

We have demonstrated that, if one drives a network so
that the nodes have strong stimulus dependence and/or his-
tory dependence, one can control for common input arising
from hidden nodes. In this way, one can pinpoint the causal
connections among the measured nodes. Many methods have
been used for determining causal connection in networks,
including Granger causality �8�, partial coherence �9�, partial

directed coherence �10�, transfer entropy �11�, mutual infor-
mation �12�, and other model regressions. Although some of
these methods are designed to address common input, they
can only control for common input arising from measured
nodes. In networks with vast numbers of hidden nodes, the
chances of measuring from all common input nodes is slim
so that controlling for common input from measured nodes
may have limited value. An alternative approach to investi-
gating the effects of hidden nodes may be to fit a network
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FIG. 1. Successful determination of circuitry for networks
driven by random gratings. Results are shown from networks con-
taining �a� a direct connection between two measured neurons and
�b� common input from an unmeasured neuron onto two measured
neurons, as schematized at top. In both cases, neuron 1’s spikes are
correlated with a delayed version of neuron 2’s spikes, and the
shuffle-corrected correlogram �7� �top panel� cannot distinguish the
circuitry. The direct connection of �a� is correctly identified, as seen
by the corresponding peak in the causal connection factor W. The
hidden common input of �b� is correctly identified by the peak in U.
�The opposite-sign reflection in W does not indicate a negative
causal connection but is rather an artifact of the weak coupling
assumption being violated �2�. It does not lead to ambiguity given
the sign of the correlation.� Delay is the spike time of neuron 1
minus spike time of neuron 2, so we define Wj =W12

−j for j�0, Wj

=W21
j for j�0, and equivalent for Uj. Thin gray lines indicate a

bootstrap estimate of one standard error, calculated from 50
resamples.
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FIG. 2. Successful determination of circuitry for networks
driven by drifting gratings. A direct connection network �a� and a
common input network �b� are shown as in Fig. 1. Although the
correlation was similar in both networks, the peak in the causal
connection factor W identified the direct connection network �a� and
the peak in the common input factor U identified the common input
network �b�. Since in this case the neurons’ PSTHs showed little
structure, the analysis primarily exploited the strong history depen-
dence of the neurons’ spike trains to distinguish the circuitry. Panels
as in Fig. 1.
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FIG. 3. �a� Sample PSTH from a neuron stimulated by random
gratings. The rich structure in the PSTH allowed the analysis to
exploit the neurons’ stimulus dependence. �b� Sample PSTH from a
neuron stimulated by drifting gratings. As the PSTH had little struc-
ture �note different temporal scale�, the neurons’ stimulus depen-
dence provided little information about the circuitry. �c� The analy-
sis was unable to determine the circuitry when neurons with little
history dependence were driven by drifting gratings. W has a peak
even though the correlation was due to common input from an
unmeasured neuron. Panels as in Fig. 1.
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model that contains a latent noise source �13�.
Our analysis exploits a model-independent description of

the relationship between nodal activity and the stimulus: the
PSTH, or more generally, the probability distribution of
nodal activity conditioned on stimulus time point. Nonethe-
less, making the subtle distinction between causal connec-
tions and hidden common input does require imposing mod-
els of the influence of history and other nodes. In particular,
the key to success is an accurate reflection of how other
nodes could influence the activity,11 though the method is
robust to small deviations �as demonstrated by our use of a
different nonlinearity than used in the simulations�. The ap-
proach also relies on observing sufficiently strong correla-

tions so that they may be further decomposed into causal
connection and common input components.

In the present work, we have overcome a major hurdle in
the application of this approach by sidestepping the need to
model how nodes respond to the stimulus �which could be a
complex emergent property of the network�. The modeling
framework is sufficiently general to allow one to “plug in” a
parametric class of models specifying how a given measured
node could respond to its history and other nodes’ activity.
The initial successes demonstrate the promise of this ap-
proach toward pinning down network circuitry among mea-
sured nodes even in the presence of large numbers of hidden
nodes.
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