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Abstract

A previously developed method for efficiently simulating complex networks of integrate-and-
fire neurons was specialized to the case in which the neurons have fast unitary postsynaptic
conductances. However, inhibitory synaptic conductances are often slower than excitatory
for cortical neurons, and this difference can have a profound effect on network dynamics that
cannot be captured with neurons having only fast synapses. We thus extend the model to
include slow inhibitory synapses. In this model, neurons are grouped into large populations
of similar neurons. For each population, we calculate the evolution of a probability density
function (PDF) which describes the distribution of neurons over state space. The population
firing rate is given by the flux of probability across the threshold voltage for firing an action
potential. In the case of fast synaptic conductances, the PDF was one-dimensional, as
the state of a neuron was completely determined by its transmembrane voltage. An exact
extension to slow inhibitory synapses increases the dimension of the PDF to two or three, as
the state of a neuron now includes the state of its inhibitory synaptic conductance. However,
by assuming that the expected value of a neuron’s inhibitory conductance is independent
of its voltage, we derive a reduction to a one-dimensional PDF and avoid increasing the
computational complexity of the problem. We demonstrate that although this assumption
is not strictly valid, the results of the reduced model are surprisingly accurate.

1 Introduction

In a previous paper (Nykamp and Tranchina, 2000), we explored a computationally efficient
population density method. This method was introduced as a tool for facilitating large-scale
neural network simulations by Knight and colleagues (Knight et al., 1996; Omurtag et al.,
2000; Sirovich et al., 2000; Knight, 2000). Earlier works that provide a foundation for our
previous and current analysis include those of Knight (1972a,b), Kuramoto (1991), Strogatz
and Mirollo (1991), Abbott and van Vreeswijk (1993), Treves (1993), and Chawanya et al.
(1993).
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The population density approach considered in the present paper is accurate when the
network is comprised of large, sparsely connected subpopulations of identical neurons each
receiving a large number of synaptic inputs. We showed (Nykamp and Tranchina, 2000)
that the model produces good results, at least in some test networks, even when all these
conditions that guarantee accuracy are not met. We demonstrated, moreover, that the
population density method can be two hundred times faster than conventional direct simu-
lations in which the activity of thousands of individual neurons and hundreds of thousands
of synapses is followed in detail.

In the population density approach, integrate-and-fire point-neurons are grouped into
large populations of similar neurons. For each population, one calculates the evolution
of a probability density function (PDF) which represents the distribution of neurons over
all possible states. The firing rate of each population is given by the flux of probability
across a distinguished voltage which is the threshold voltage for firing an action potential.
The populations are coupled via stochastic synapses in which the times of postsynaptic
conductance events for each neuron are governed by a modulated Poisson process whose rate
is determined by the firing rates of its presynaptic populations.

In our original model (Nykamp and Tranchina, 2000), we assumed that the time course
of the postsynaptic conductance waveform of both excitatory and inhibitory synapses was
fast on the time scale of the typical 10–20 ms membrane time constant (Tamás et al., 1997).
In this approximation, the conductance events were instantaneous (delta functions) so that
the state of each neuron was completely described by its transmembrane voltage. This
assumption resulted in a one-dimensional PDF for each population. The approximation of
instantaneous synaptic conductance seems justified for those excitatory synaptic conductance
mediated by AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors
that decay with a time constant of 2–4 ms (Stern et al., 1992).

We were motivated to embellish and extend the population density methods because
the instantaneous synaptic conductance approximation is not justified for some inhibitory
synapses. Most inhibition in the cortex is mediated by the neurotransmitter γ-aminobutyric
acid (GABA) via GABAA or GABAB receptors. Some GABAA conductances decay with
a time constant that is on the same scale as the membrane time constant (Tamás et al.,
1997; Galarreta and Hestrin, 1997), and GABAB synapses are an order of magnitude slower.
Furthermore, slow inhibitory synapses may be necessary to achieve proper network dynamics.

With slow inhibition, the state of each neuron is described not only by its transmembrane
voltage, but also by one or more variables describing the state of its inhibitory synaptic
conductance. Thus, a full population density implementation of neurons with slow inhibitory
synapses would require two or more dimensions for each PDF. Doubling the dimension will
square the size of the discretized state space and greatly decrease the speed of the population
density computations. Instead of developing numerical techniques to solve this more difficult
problem efficiently, we chose to develop a reduction of the expanded population density model
back to one dimension that gives fast and accurate results.

In section 2 we outline the integrate-and-fire point-neuron model with fast excitation and
slow inhibition that underlies our population density formulation. In section 3 we briefly
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derive the full population density equations that include slow inhibition. We reduce the
population densities to one dimension and derive the resulting equations in section 4. We
test the validity of the reduction in section 5, and demonstrate the dramatic difference in
network behavior that can be introduced by the additional of slow inhibitory synapses. We
discuss the results in section 6.

2 The integrate-and-fire neuron

As in our original model (Nykamp and Tranchina, 2000), the implementation of the popula-
tion density approach is based on an integrate-and-fire, single-compartment neuron (point-
neuron). We describe here the changes made to introduce slow inhibition.

The evolution of a neuron’s transmembrane voltage V in time t is specified by the stochas-
tic ordinary differential equation1:

c
dV

dt
+ gr(V − Er) + Ge(t)(V − Ee) + Gi(t)(V − Ei) = 0, (1)

where c is the capacitance of the membrane, gr, Ge(t), and Gi(t) are the resting, excitatory
and inhibitory conductances, respectively, and Er/e/i are the corresponding equilibrium po-
tentials. When V (t) reaches a fixed threshold voltage vth, the neuron is said to fire a spike,
and the voltage is reset to the voltage vreset .

The synaptic conductances Ge(t) and Gi(t) vary in response to excitatory and inhibitory
input, respectively. We denote by Ak

e/i the integral of the change in Ge/i(t) due to a unitary

excitatory/inhibitory input at time T k
e/i. Thus, if Ĝk

e/i(t) is the response of the excita-

tory/inhibitory synaptic conductance to a single input at time T k
e/i, then Ak

e/i =
∫

Ĝk
e/i(t)dt.

The voltage V (t) is a dynamic random variable because we view the Ak
e/i and T k

e/i as random
quantities. We denote the average value of Ae/i by µAe/i

.

2.1 Excitatory synaptic input

Since the change in Ge(t) due to excitatory input is assumed to be very fast, it is approx-
imated by a delta function, Ge(t) =

∑
k Ak

e δ(t − T k
e ). Upon receiving an excitatory input,

the voltage jumps by the amount

∆V = Γ∗k
e

[
Ee − V (T k−

e )
]
, (2)

where2 Γ∗k
e = 1 − exp(−Ak

e/c). Since the size of each conductance event Ak
e is random, the

Γ∗k
e are random numbers. We define the complementary cumulative distribution function for

Γ∗
e,

F̃Γ∗
e
(x) = Pr(Γ∗

e > x), (3)

which is some given function of x that depends on the chosen distribution of Ak
e .

1In stochastic ordinary differential equations and auxiliary equations, upper case Roman letters indicate
random quantities.

2We use the notation Γ∗
e for consistency with notation from our earlier paper.
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2.2 Inhibitory synaptic input

The inhibitory synaptic input is modeled by a slowly changing inhibitory conductance Gi(t).
Upon receiving an inhibitory synaptic input, the inhibitory conductance increases and then
decays exponentially. The rise of the inhibitory conductance can be modeled as either an
instantaneous jump (which we call first order inhibition) or a smooth increase (second order
inhibition).

For first order inhibition, the evolution of Gi(t) is governed by

τi
dGi

dt
= −Gi(t) +

∑
k

Ak
i δ(t − T k

i ), (4)

where τi is the time constant for the decay of the inhibitory conductance. The response of
Gi(t) to a single inhibitory synaptic input at T = 0 is Gi(t) = (Ai/τi) exp(−t/τi) for t > 0.

For second order inhibition, we introduce an auxiliary variable S(t) and model the evo-
lution of Gi(t) and S(t) with the equations τi

dGi

dt
= −Gi(t) + S(t) and τs

dS
dt

= −S(t) +∑
k Ak

i δ(t − T k
i ), where τs/i is the time constant for the rise/decay of the inhibitory con-

ductance (τs ≤ τi). The response of Gi(t) to a single inhibitory synaptic input is either a
difference of exponentials or, if τi = τs, an alpha function.

Since the Ak
i are random numbers, we define the complementary cumulative distribution

function for Ai,
F̃Ai

(x) = Pr(Ai > x), (5)

which is some given function of x.

3 The full population density model

With slow inhibitory synapses, the state of a neuron is described not only by its voltage
(V (t)), but also by one (first order inhibition) or two (second order inhibition) variables for
the state of the inhibitory conductance (Gi(t) and possibly S(t)). Thus, the state space is
now at least two-dimensional. Figure 1a illustrates the time courses of V (t) and Gi(t) (with
first order inhibition) driven by the arrival of random excitatory and inhibitory synaptic
inputs. When an excitatory event occurs, V jumps abruptly; when an inhibitory event
occurs, Gi jumps abruptly. Thus, a neuron executes a “random walk” in the V − Gi plane,
as illustrated in figure 1b.

For simplicity, we focus on the two-dimensional case of first order inhibition. The equa-
tions for second order inhibition are similar. We first derive equations for a single population
of uncoupled neurons with specified input rates. We denote the excitatory and inhibitory
input rates at time t by νe(t) and νi(t), respectively. For the non-interacting neurons, νe(t)
and νi(t) are considered to be given functions of time. In section 4.4, we outline the equations
for networks of interacting neurons.
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Figure 1: Illustration of the two-dimensional state space with first order inhibition. (a) A
trace of the evolution of voltage and inhibitory conductance in response to constant input
rate (νe = 400 imp/sec, νi = 200 imp/sec). For illustration, spikes are shown by dotted lines
and the graylevel changes after each spike. (b) The same trace shown as a trajectory in the
two-dimensional state space of voltage and inhibitory conductance.
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3.1 The conservation equation

The two-dimensional state space for first order inhibition leads to the following two-dimensional
PDF for a neuron

ρ(v, g, t)dv dg = Pr{V (t) ∈ (v, v + dv) and Gi(t) ∈ (g, g + dg)}, (6)

for v ∈ (Ei, vth) and g ∈ (0,∞). For a population of neurons, the PDF can be interpreted as
a population density; i.e.

ρ(v, g, t)dv dg = Fraction of neurons with V (t) ∈ (v, v + dv) and Gi(t) ∈ (g, g + dg). (7)

Each neuron has a refractory period of length τref immediately after it fires a spike.
During the refractory period, its voltage does not move, though its inhibitory conductance
evolves as usual. When a neuron is refractory, it is not accounted for in ρ(v, g, t). For this
reason, ρ(v, g, t) does not usually integrate to 1. Instead,

∫ ∫
ρ(v, g, t)dv dg is the fraction of

neurons that are not refractory. In appendix B, we describe the probability density function
fref that describes neurons in the refractory state. However, since fref plays no role in the
reduced model, we only mention the properties of fref as we need them for the derivation.

The evolution of the population density ρ(v, g, t) is a described by a conservation equation,
which takes into account the voltage reset after a neuron fires. Since a neuron reenters
ρ(v, g, t) after it becomes non-refractory, we view the voltage reset as occurring at the end
of the refractory period. Thus, the evolution equation is:

∂ρ

∂t
(v, g, t) = −∇ · ~J(v, g, t) + δ(v − vreset)JU(τref , g, t)

= −
(

∂JV

∂v
(v, g, t) +

∂JG

∂g
(v, g, t)

)
+ δ(v − vreset)JU(τref , g, t). (8)

~J(v, g, t) = (JV (v, g, t), JG(v, g, t)) is the flux of probability at (V (t), Gi(t)) = (v, g). The

flux ~J is a vector quantity in which the JV component gives the flux across voltage and the
JG, component gives the flux across conductance. Each component is described below. The
last term in (8) is the source of probability at vreset due to the reset of each neuron’s voltage
after it becomes non-refractory. The calculation of JU(τref , g, t), which is the flux of neurons
becoming non-refractory, is described in appendix B.

Since a neuron fires a spike when its voltage crosses vth, the population firing rate is the
total flux across threshold:

r(t) =
∫

JV (vth, g, t)dg. (9)

The population firing rate is not a temporal average, but is an average over all neurons in
the population. When a neuron fires a spike, it becomes refractory for the duration of the
refractory period of length τref . Thus, the total flux of neurons becoming non-refractory at
time t is equal to the firing rate at time t − τref :∫

JU(τref , g, t)dg = r(t − τref). (10)

The condition (10) is the only property of JU that we will need for our reduced model.
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3.2 The components of the flux

The flux across voltage JV in (8) is similar to the flux across voltage from the fast synapse
model (Nykamp and Tranchina, 2000). The total flux across voltage is:

JV (v, g, t) = −gr

c
(v − Er)ρ(v, g, t) + νe(t)

∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
ρ(v′, g, t)dv′ − g

c
(v − Ei)ρ(v, g, t)

(11)
where νe(t) is the rate of excitatory synaptic input at time t.

The three terms of the flux across voltage correspond to the terms on the right hand side
of equation (1). The first two terms are the components of the flux due to leakage toward
Er and excitation toward Ee, respectively, which are identical to the leakage and excitation
fluxes in the fast synapse model. Because the slow inhibitory conductance causes the voltage
to evolve smoothly toward Ei with velocity −(V (t) − Ei)Gi(t)/c, the inhibition flux is the
third term in equation (11).

The flux across conductance JG consists of two components, corresponding to the two
terms on the right hand side of equation (4):

JG(v, g, t) = − g

τi
ρ(v, g, t) + νi(t)

∫ g

0
F̃Ai

(τi(g − g′))ρ(v, g′, t)dg′, (12)

where νi(t) is the rate of inhibitory synaptic input at time t. The first term is the component
of flux due to the decay of the inhibitory conductance toward 0 at velocity −Gi(t)/τi. The
second term is the flux from the jumps in the inhibitory conductance when the neuron
receives inhibitory input. The derivation of the second term is analogous to the derivation
of the flux across voltage due to excitation.

4 The reduced population density model

For the sake of computational efficiency, we developed a reduction of the model with slow
synapses back to one dimension. This reduced model can be solved as quickly as the model
with fast synapses.

To derive the reduced model, we first show that the jumps in voltage due to excitation,
and thus the jumps across the firing threshold vth, are independent of the inhibitory conduc-
tance. We therefore only need to calculate the distribution of neurons across voltage (and
not inhibitory conductance) in order to accurately compute the population firing rate r(t).
We then show that the evolution of the distribution across voltage depends on the inhibitory
conductance only via its first moment. The evolution of this moment can be computed by a
simple ordinary differential equation if we assume it is independent of voltage.

4.1 EPSP amplitude independent of inhibitory conductance

The fact that the size of the excitatory voltage jump is independent of the inhibitory con-
ductance is implicit in equation (2). Insight may be provided by the following argument. To
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calculate the response in voltage to a delta function excitatory input at time T , we integrate
(1) from the time just before the input T− to the time just after the input T+. The terms
involving gr and Gi(t) drop out because they are finite and thus cannot contribute to the
integral over the infinitesimal interval (T−, T+). The term with Ge(t) remains because across
this interval Ge(t) is a delta function.

Physically, the independence from Gi(t) corresponds to excitatory current so fast, that
it can only be balanced by capacitative current. Although the peak of the EPSP does not
depend on the inhibitory conductance, the time course of the EPSP does. A large inhibitory
conductance would, for example, create a shunt which would quickly bring the voltage back
down after an excitatory input.

4.2 Evolution of distribution in voltage

Since excitatory jump sizes are independent of inhibitory conductance, we can calculate the
population firing rate at time t if we know only the distribution of neurons across voltage.
We denote the marginal probability density function in voltage by fV (v, t), which is defined
by

fV (v, t)dv = Pr{V (t) ∈ (v, v + dv)} (13)

and is related to ρ(v, g, t) by 3

fV (v, t) =
∫

ρ(v, g, t)dg. (14)

We derive an evolution equation for fV by integrating (8) with respect to g, obtaining:

∂fV

∂t
(v, t) = −

(∫
∂JV

∂v
(v, g, t)dg +

∫
∂JG

∂g
(v, g, t)dg

)
+ δ(v − vreset)

∫
JU(τref , g, t)dg. (15)

Because Gi(t) cannot cross 0 or infinity, the flux at those points is zero, and consequently
the second term on the right hand side is zero:∫

∂JG

∂g
(v, g, t)dg = lim

g→∞ JG(v, g, t)− JG(v, 0, t) = 0 (16)

Using condition (10), we have the following conservation equation for fV :

∂fV

∂t
(v, t) = −∂J̄V

∂v
(v, t) + δ(v − vreset)r(t − τref), (17)

where J̄V (v, t) is the total flux across voltage:

J̄V (v, t) =
∫

JV (v, g, t)dg (18)

= −gr

c
(v − Er)fV (v, t) + νe(t)

∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
fV (v′, t)dv′ − 1

c
(v − Ei)

∫
gρ(v, g, t)dg

3Note that this enables us to rewrite the expression (9) for the population firing rate as r(t) =
νe(t)

∫ vth

Ei
F̃Γ∗

e

(
vth−v′
Ee−v′

)
fV (v′, t)dv′ (since ρ(vth, g, t) = ρ(Ei, g, t) = 0), confirming that the firing rate de-

pends only on the distribution in voltage.
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Equation (17) would be a closed equation for fV (v, t) except for its dependence on∫
g ρ(v, g, t)dg, the first moment of Gi. Thus, to calculate the population firing rates, we

don’t need the distribution of neurons across inhibitory conductance; we only need the av-
erage value of that conductance for neurons at each voltage. This can be seen more clearly
by rewriting the last term of (18) as follows.

Let fG|V (g, v, t) be the probability density function for Gi given V :

fG|V (g, v, t)dg = Pr{Gi(t) ∈ (g, g + dg)|V (t) = v}. (19)

Then, since ρ(v, g, t) = fG|V (g, v, t)fV (v, t), we have that the first moment of Gi is

∫
g ρ(v, g, t)dg =

∫
gfG|V (g, v, t)dg fV (v, t)

= µG|V (v, t)fV (v, t), (20)

where µG|V (v, t) is the expected value of Gi given V :

µG|V (v, t) =
∫

g fG|V (g, v, t)dg. (21)

Substituting (20) into (18), we have the following expression for the total flux across voltage

J̄V (v, t) = −gr

c
(v−Er)fV (v, t)+νe(t)

∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
fV (v′, t)dv′−µG|V (v, t)

c
(v−Ei)fV (v, t),

(22)
which, combined with (17), gives the equation for the evolution of the distribution in voltage:

∂fV

∂t
(v, t) =

∂

∂v

[
gr

c
(v − Er)fV (v, t) − νe(t)

∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
fV (v′, t)dv′

+
µG|V (v, t)

c
(v − Ei)fV (v, t)

]

+ δ(v − vreset)r(t − τref). (23)

4.3 The independent mean assumption

Equation (23) depends on the mean conductance µG|V (v, t). In appendix A, we derive an
equation for the evolution of the mean conductance µG|V (v, t) (equation (34) coupled with
(38) and (39)). The equation cannot be solved directly because it depends on µG2|V , the
second moment of Gi. The equation for the evolution of the second moment would depend
on the third, and so on for higher moments, forming a moment expansion in Gi.

To close the moment expansion, one has to make an assumption that will make the
expansion terminate. We assume that µG|V (v, t) is independent of voltage, i.e. that the
mean conditioned on the voltage is equal to the unconditional mean:

µG|V (v, t) = µG(t) (24)
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where µG(t) is the mean value of Gi(t) averaged over all neurons in the population.
Since the equation for the evolution of Gi (4) is independent of voltage, this assumption

closes the moment expansion at the first moment and enables us to derive, as shown in
appendix A, a simple ordinary differential equation for the evolution of the mean voltage:

dµG

dt
(t) =

νi(t)µAi
− µG(t)

τi

. (25)

Therefore, if we make our independence assumption (24), we can combine (25) with (23)
to calculate the evolution of a single population of uncoupled neurons to excitatory and
inhibitory input at the given rates νe(t) and νi(t).

4.4 Coupled populations

All the population density derivations above were for a single population of uncoupled neu-
rons. However, we wish to apply the population density method to simulate large networks
of coupled neurons. The implementation of a network of population densities requires two
additional steps. A detailed description and analysis of the assumptions behind these steps
has been given earlier (Nykamp and Tranchina, 2000).

The first step is to group neurons into populations of similar neurons and form a pop-
ulation density for each group, denoted fk

V (v, t), where k = 1, 2, . . . , N enumerates the N
populations. Each population has a corresponding population firing rate, denoted rk(t). De-
note the set of excitatory indices by ΛE and the set of inhibitory indices by ΛI , i.e., the set
of excitatory/inhibitory populations is {fk

V (v, t) | k ∈ ΛE/I}. Denote any imposed external
excitatory/inhibitory input rates to population k by νk

e/i,o(t).
The second step is to determine the connectivity between the populations and form

the connectivity matrix Wjk, j, k = 1, 2, . . . , N . Wjk is the average number of presynap-
tic neurons from population j that project to each postsynaptic neuron in population k.
The synaptic input rates to each population are then determined by the firing rates of its
presynaptic population as well as external firing rates by:

νk
e/i(t) = νk

e/i,o(t) +
∑

j∈ΛE/I

Wjk

∫ ∞

0
αjk(t

′)rj(t − t′)dt′ (26)

where αjk(t
′) is the distribution of latencies of synapses from population j to population k.

The choice of αjk(t
′) used in our simulations is given in appendix D. Using the input rates

determined by (26), one can calculate the evolution of each population using the equations
for the single population.

4.5 Summary of equations

Combining (17), (22), (24), and (25), we have a partial differential-integral equation coupled
with an ordinary differential equation for the evolution of a single population density with
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synaptic input rates νe(t) and νi(t). In a network with populations fk
V (v, t), these input rates

are given by (26). The firing rates of each population are given by (9).
The following summarizes the equations of the population density approach with popu-

lations k = 1, 2, . . . , N .

∂fk
V

∂t
(v, t) = −∂J̄k

V

∂v
(v, t) + δ(v − vreset)r

k(t − τref) (27)

J̄k
V (v, t) = −gr

c
(v − Er)f

k
V (v, t) + νk

e (t)
∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
fk

V (v′, t)dv′ − µk
G(t)

c
(v − Ei)f

k
V (v, t)

(28)
rk(t) = J̄k

V (vth, t) (29)

dµk
G

dt
(t) =

νk
i (t)µAi

− µk
V (t)

τi

(30)

νk
e/i(t) = νk

e/i,o(t) +
∑

j∈ΛE/I

Wjk

∫ ∞

0
αjk(t

′)rj(t − t′)dt′ (31)

The boundary conditions for the partial differential-integral equations are that fk
V (Ei, t) =

fk
V (vth, t) = 0. In general, the parameters Ee/i/r, vth/reset , gr, c, and µAi

as well as the function

F̃Γ∗
e
, could depend on k.

5 Tests of validity

The reduced population density model would give the same results as the full model if the
expected value of the inhibitory conductance were independent of the voltage. We expect
that the reduced model should give good results if the independence assumption (24) is
approximately satisfied.

We performed a large battery of tests by which to gauge the accuracy of the reduced
model. For each test, we compared the firing rates of the reduced population density model
with the firing rates from direct simulations of groups of integrate-and-fire neurons, computed
as described in appendix C. We modeled the inhibitory input accurately for the direct
simulations, using the equations from section 2. Thus, the direct simulation firing rates
serve as a benchmark against which we can compare the reduced model.

5.1 Testing procedure

We focus first on simulations of a single population of uncoupled neurons. For a single
population of uncoupled neurons that receive specified input that is a modulated Poisson
process, the population density approach without the independent mean assumption (24)
would give exactly the same results as a large population of individual neurons. Thus, tests
of single population results will demonstrate what errors the independent mean assumption
alone introduces.
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We also performed extensive tests using a simple network of one excitatory and one in-
hibitory population. In the network simulations, the comparison with individual neurons also
tests other assumptions of the population density, such as the assumption that the combined
synaptic input to each neuron can be approximated by a modulated Poisson process. We
have demonstrated earlier that these assumptions are typically satisfied for sparse networks
(Nykamp and Tranchina, 2000). The network tests with the reduced population density
model will demonstrate the accumulated errors from all the approximations.

For both single population and two population tests, we performed many runs with ran-
dom sets of parameters. We chose parameters in the physiological regime, but the parameters
were chosen independently of one another. Thus, rather than focusing on parameter sets
that may be relevant to a particular physiological system, we decided to stress the model
with many combinations of parameters to probe the conditions under which the reduced
model is valid. However, we analyzed the results of only those tests where the average firing
rates were between 5 spikes/second and 300 spikes/second. Average spike rates greater than
300 spikes/second are unphysiological, and spike rates less than 5 spikes/second are too low
to permit a meaningful comparison by our deviation measure, below.

We randomly varied the following parameters: the time constant for inhibitory synapses
τi, the average unitary excitatory input magnitude µAe, the average peak unitary inhibitory
synaptic conductance µAi

/τi, and the connectivity of the network Wjk. We selected τi ran-
domly from the range τi ∈ (2, 25) ms. Scaling the excitatory input by the membrane ca-
pacitance to make it dimensionless, we used the range: µAe/c ∈ (0.001, 0.030). Similarly,
scaling the peak unitary inhibitory conductance by the resting conductance, we used the
range µAi

/(τigr) ∈ (0.001, 0.200). The single population simulations represented uncoupled
neurons, so we set the connectivity to zero (W11 = 0). For the two population simulations, we
set all connections to the same strength (Wjk = W̄ , j, k = 1, 2), and selected that strength
randomly from W̄ ∈ (5, 50). The other parameters were fixed for all simulations. These
fixed parameters as well as the forms of the probability distributions for Ae/i are described
in appendix D.

For the purpose of illustration, we also ran some single population simulations with a
larger peak unitary inhibitory conductance. We allowed µAi

/(τigr) to range as large as
1, which is not physiological since a single inhibitory event then doubles the membrane
conductance from its resting value.

To provide inputs rich in temporal structure, we constructed each of the external input
rates ν1

e,o(t) and ν1
i,o(t) from sums of sinusoids with frequencies of 0, 1, 2, 4, 8, and 16

cycles/second. The phases and relative amplitudes of each component of the sum were
chosen randomly. The steady components, which were the mean rates ν̄1

e,o and ν̄1
i,o, were

independently chosen from the range ν̄1
e/i,o ∈ (0, 2000) spikes/second. The amplitudes of the

other 5 components were scaled by the largest common factor that would keep ν1
e/i,o(t) in

the range (0, 2ν̄1
e/i,o) for all time. For the two population simulations, the second population

received no external input and we set ν2
e,o(t) = ν2

i,o(t) = 0.
We performed similar tests using second order inhibition with larger inhibitory time

constants (τi ∈ (50, 100) ms, τs ∈ (2, 5) ms) and a lower inhibitory reversal potential (E〉 =

12



−90 mV rather than −70 mV), in order to approximate GABAB synapses. Since the results
were similar to those with first order inhibition, we do not focus on them here.

We also performed one test of a physiological network. We implemented a slow inhibitory
synapse version of the model of one hypercolumn of visual cortex we used in an earlier paper
(Nykamp and Tranchina, 2000). This model simulates the response of neurons in the primary
visual cortex of a cat to an oriented flashed bar. We kept every aspect of the model unchanged
except the inhibitory synapses. The original model had instantaneous inhibitory synapses.
In this implementation we used first order inhibition with τi = 8 ms and kept the integral of
the unitary inhibitory conductance the same as that in the previous model.

5.2 Test results

For each run, we calculated the firing rates in response to the input using both the population
density method and a direct simulation of 1000 individual integrate-and-fire point-neurons.
We calculated the firing rates of the individual neurons by counting spikes in 5 ms bins,
denoting the firing rate for the jth bin as r̃j. To compare the two firing rates, we averaged
the population density firing rate over each bin, denoting the average rate for the jth bin by
rj. We then calculated the following deviation measure:

∆ =

√∑
j(rj − r̃j)2√∑

j r2
j

, (32)

where the sum is over all bins. The deviation measure ∆ is a quantitative measure of the
difference between the firing rates, but it has shortcomings, as demonstrated below. For two
populations, we report the maximum ∆ of the populations.

5.2.1 Single uncoupled population

We performed 10,000 single population runs and found that the reduced population density
method was surprisingly accurate for all the runs. The average ∆ was only 0.05 and the
maximum ∆ was 0.19. Figure 2a shows the results of a typical run. For this run with a ∆
near average (∆ = 0.06), the firing rates of the population density and direct simulations
are virtually indistinguishable.

Since the population density results closely matched the direct simulation results for all
10,000 runs, we simulated a set of 500 additional runs which included unrealistically large
unitary inhibitory conductance events (µAi

/(τigr) as large as 1). In some cases, the large
inhibitory conductance events led to larger deviations. The results from the run with the
highest deviation measure (∆ = 0.43) are shown in figure 2b. In this example, the population
density firing rates are consistently lower than the direct simulation firing rates.

The derivation of the reduced population density model assumed that the mean value
of the inhibitory conductance µG|V (v, t) was independent of the voltage v (24). A necessary
(though not sufficient) condition for (24) is the absence of correlation between the inhibitory
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Figure 2: Example single uncoupled population results. Excitatory (black line) and in-
hibitory (gray line) input rates are plotted in the top panel. Population density firing rate
(black line) and direct simulation firing rate (histogram) are plotted in the middle panel.
The correlation coefficient between the voltage and the inhibitory conductance is shown in
the bottom panel. (a) The results from a typical simulation. The firing rates from both
simulations are nearly identical, and the correlation coefficient is small. Parameters: τi = 6.5
ms, µAe/c = 0.015, µAi

/(τigr) = 0.029, ν̄e = 619 imp/s, ν̄i = 961 imp/s. (b) The results
with the largest deviation when we allowed the unitary inhibitory conductance to be unreal-
istically large. The population density firing rate consistently undershoots that of the direct
simulation, and the correlation coefficient is large and negative. Parameters: τi = 22.2 ms,
µAe/c = 0.030, µAi

/(τigr) = 0.870, ν̄e = 531 imp/s, ν̄i = 118 imp/s.
14



−70 −65 −60 −55
0

0.05

0.1

0.15

0.2

Voltage (mV)

P
ro

ba
bi

lit
y 

D
en

si
ty

(a)

0 0.5 1
0

1

2

3

4

5

6

G
i

P
ro

ba
bi

lit
y 

D
en

si
ty

(b)

−70 −65 −60 −55
0

0.1

0.2

0.3

0.4

0.5

Voltage (mV)

M
ea

n 
G

i

(d)

−70
−65

−60
−55 0

0.5

10

0.2

0.4

0.6

G
i

(c)

Voltage (mV)

P
ro

ba
bi

lit
y 

D
en

si
ty

Figure 3: Snapshots from t = 900 ms of figure 2a. (a) Distribution of neurons across voltage
as computed by population density (black line) and direct simulation (histogram). (b)
Distribution of neurons across inhibitory conductance from direct simulation (histogram).
Vertical black line is at the average inhibitory conductance from the population density
simulation. (c) Distribution of neurons across voltage and inhibitory conductance from the
direct simulation averaged over 100 repetitions of the input. (d) Conditional mean inhibitory
conductance µG|V (v, t) from direct simulation (black line). Horizontal gray line is plotted at
the mean inhibitory conductance µG(t) from the population density simulation.

conductance and the voltage. Thus the correlation coefficient calculated from the direct
simulation might be a good predictor of the reduced population density’s accuracy.

The correlation coefficient, which can range between −1 and 1, is plotted underneath each
firing rate in figure 2. For the average results of figure 2a, the correlation coefficient is very
small and usually negative. For the larger deviation in figure 2b, the inhibitory conductance
is strongly negatively correlated with the voltage throughout the run. Thus, at least in this
case, the correlation coefficient does explain the difference in accuracy between the two runs.

Not only do the population density simulations give accurate firing rates, they also cap-
ture the distribution of neurons across voltage (fV ) and the mean inhibitory conductance
(µG), as shown by the snapshots in figure 3. Figure 3a compares the distribution of neurons
across voltage (fV (v, t)) as calculated by the population density and direct simulations. Al-
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Figure 4: Snapshots from t = 900 ms of figure 2b. (a) Distribution of neurons across
voltage as computed by population density (black line) and direct simulation (histogram).
(b) Conditional mean inhibitory conductance µG|V (v, t) from direct simulation (black line).
Horizontal gray line is plotted at the mean inhibitory conductance µG(t) from the population
density simulation.

though the direct simulation histogram is still ragged with 1,000 neurons, it is very close to
the fV (v, t) calculated by the population density model. Figure 3b demonstrates that the
population density can calculate an accurate mean inhibitory conductance despite the wide
distribution of neurons across inhibitory conductance.

For illustration, figure 3c shows the full distribution of neurons across voltage and in-
hibitory conductance. In order to produce a relatively smooth graph, this distribution was
estimated by averaging the direct simulation over 100 repetitions of the input. The surpris-
ing result of our reduced method is that we can collapse the full distribution in figure 3c to
the distribution in voltage of figure 3a coupled with the mean inhibitory conductance from
figure 3b.

To analyze our critical independence assumption (24), we plot in figure 3d an estimate of
the conditional mean µG|V computed by the direct simulation along with the unconditional
mean value µG from the population density simulation. For this example, the estimate of
µG|V is nearly independent of voltage, which explains why the population density results so
closely match those from the direct simulation.

The snapshots in figure 4, which are from t = 900 ms in figure 2b, further demonstrate the
breakdown of the independence assumption that can occur with unrealistically large unitary
inhibitory conductances. Figure 4b shows that the mean inhibitory conductance µG|V (v, t)
is not independent of voltage but decreases as the voltage increases. This dependence leads
to the discrepancy in the distribution of neurons across voltage seen in figure 4a. The
match between the direct simulation and the population density results might be improved
if, rather than making an independence assumption (24) at the first moment of Gi, we
retained the second moment from the moment expansion described at the beginning of
section 4.3. Further analysis of the sources of disagreements between direct and population
density computations is given in the discussion.
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Figure 5: Examples of two population results. (a) The firing rates match well despite a large
deviation measure (∆ = 0.64). Top panel: Excitatory (black line) and inhibitory (gray line)
input rates. Middle and bottom panel: Excitatory and inhibitory population firing rates,
respectively. Population density (black line) and direct simulation (histogram) results are
shown. Parameters: W̄ = 48.05, τi = 22.25 ms, µAe/c = 0.011, µAi

/(τigr) = 0.196, ν̄e = 1853
imp/s, ν̄i = 82 imp/s. (b) Slight timing differences caused the large deviation (∆ = 0.98).
Panels as in (a). Parameters: W̄ = 47.89, τi = 2.49 ms, µAe/c = 0.005, µAi

/(τigr) = 0.137,
ν̄e = 1913 imp/s, ν̄i = 1367 imp/s.
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5.2.2 Two population network

We simulated 300 runs of the two population network. Most (245/300) of the runs had
relatively low deviation measure of ∆ below 0.30. A substantial fraction (55/300) had
deviations larger than 0.30. However, as demonstrated by examples below, we discovered
numerous cases where ∆ was high but the firing rates of the population density and direct
simulations were subjectively similar. This discrepancy is largely due to the sensitivity of
∆ to timing; slight differences in timing frequently lead to a large ∆. Rather than invent
another deviation measure, we analyzed by eye each of the 55 simulations with ∆ > 0.30
to determine the source of the large ∆. We discovered that for the majority (31/55) of the
simulations, the two firing rates appeared subjectively similar, as demonstrated by examples
below. For only 24 of the 300 simulations, did the firing rates of the population density differ
substantially from the direct simulation firing rate. However, we demonstrate evidence that
these simulations represent situations in which the network has several different stable firing
patterns and that neither the direct simulation nor the population density simulation can
be viewed as the standard or correct result.

Figure 5a demonstrates a case in which there is good qualitative agreement between direct
and population density computations despite a large deviation measure (∆ = 0.64). Note
that since the population firing rate is a population average, not a temporal average, the sharp
peaks above 600 impulses/second in the inhibitory population firing rate do not indicate that
a single neuron was firing above 600 impulses/second. Rather, these sharp peaks indicate
that many neurons in the population fired a spike within a short time interval, a phenomenon
we call population synchrony. For this example, the large ∆ was caused by slight differences
in timing of the tight population synchrony. Thus, not only does this example illustrate
deficiencies in the measure ∆, it also demonstrates how well the population density model
can capture the population synchrony of a strongly coupled network.

In other cases, a large ∆ indicated more substantial discrepancies between the direct and
population density simulations. Figure 5b shows the results of a simulation with ∆ = 0.98.
The deviation measure is so high because the timing of the two models differs enough so that
the peaks in activity sometimes do not overlap. Even so, the timings typically differ by only
about 5 ms, and the firing rates are subjectively similar. In figure 6a, the population density
underestimates the firing rates three times (∆ = 0.66) but catches all qualitative features.

In 24 simulations, we observed periods of gross qualitative differences between the popu-
lation density firing rates and the direct simulation firing rates. We discovered that in each of
these cases, the network dynamics were extremely sensitive to parameters; rounding param-
eters to three significant digits led to large differences in firing pattern for both population
density and direct simulations. In some cases, this rounding caused the firing patterns to
converge and produced a low deviation measure.

An example of a simulation with a large deviation measure (∆ = 1.09) is shown in
figure 6b. Between t = 250 and 400 ms, the network appears to have a stable fixed point with
both populations firing steadily at high rates. The direct simulation approaches this putative
fixed point more rapidly than the population density simulation. At around t = 400 ms,
the response of both simulations is consistent with a fixed point losing stability, as the firing
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Figure 6: Further examples of two population results. Panels as in figure 5. (a) A simulation
where the population density underestimates the firing rate. Parameters: W̄ = 25.54,
τi = 11.66 ms, µAe/c = 0.018, µAi

/(τigr) = 0.172, ν̄e = 908 imp/s, ν̄i = 1391 imp/s. (b) A
simulation with large deviations between the population density and direct simulation firing
rates. Parameters: W̄ = 40.942, τi = 19.992 ms, µAe/c = 0.018, µAi

/(τigr) = 0.144, ν̄e = 696
imp/s, ν̄i = 44 imp/s.

19



rates oscillate around the fixed point with increasing amplitude. However, the oscillations of
the direct simulation grow more rapidly than those of the population density simulation, and
the populations in the direct simulation stop firing 150 ms before those in the population
density simulation. From this point on, the population density and direct simulations behave
similarly. But since the input rates for this example change slowly, the firing rates do not
phase lock to the input rates, and the two simulations oscillate out of phase.

The behavior after t = 400 ms is reminiscent of drifting through a Hopf bifurcation and
tracking the ghost of an unstable fixed point (Baer et al., 1989). Once the fixed point loses
stability, the state of the system evolves away from the unstable fixed point only slowly. Any
additional noise will cause the system to leave the fixed point faster (Baer et al., 1989). Thus,
the additional noise in the direct simulation (e.g. from heterogeneity in the connectivity or
finite size effects) might explain why the direct simulation leaves the fixed point more quickly.

Furthermore, the stability of this fixed point is extremely sensitive to parameters. Even
when we leave all parameters fixed and generate a different realization of the direct simulation
network, the point at which the direct simulation drops off the fixed point can differ by 100
ms. Rounding parameters to 3 significant digits changes the duration of the fixed point by
hundreds of milliseconds. Moreover, when we increased µAi

/(τigr) from 0.143 to 0.16, we
no longer observed the high fixed point, and the firing rates of the two simulations matched
with only small delays.

Each of the 24 simulations with high deviation measure exhibited similarly high sensitivity
to parameters. Most of them appeared to have fixed points with high firing rates, giving rise
to apparent bistability in the network activity; typically, these fixed points gained or lost
stability differently for the two models. These observations suggest the possibility that the
large deviations above reflect differences between Monte Carlo simulations and solutions of
the corresponding partial differential-integral equations under bistable conditions. In these
situations, neither simulation can be considered the standard; the deviation measure ∆ is not
a measure of the error in the population density simulation but a reflection of the sensitivity
of the bistable conditions to noise. Thus, these discrepancies probably do not result from
our dimension reduction approximation.

5.2.3 Model of one hypercolumn of visual cortex

In our model of one hypercolumn of visual cortex, based on that of Somers et al. (1995),
excitatory and inhibitory populations are labeled by their preferred orientations. These pre-
ferred orientations are established by the input from the LGN, as demonstrated in figure 7a.
The LGN synaptic input rates (νj

e,o(t)) to excitatory populations in response to a flashed
bar oriented at 0◦ are shown in the top panel. The population with a preferred orientation
at 0◦ received the strongest input, and the population at 90◦ received the weakest input. In-
hibitory populations received similar input. The resulting excitatory population firing rates
(rj(t)) are shown in the bottom panel. More details on the structure of the network are
given in appendix D and in our earlier paper (Nykamp and Tranchina, 2000).

The addition of slow inhibitory synapses changes the dynamics of the network response.
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Figure 7: Results of visual cortex simulation. (a) Population density results with slow
inhibition. Top panel: Synaptic input rates from the LGN to excitatory populations. These
input rates are produced by a bar flashed from t = 100 ms to t = 350 ms, oriented at 0◦;
thus the input to the population at 0◦ is the largest. Bottom panel: The firing rates of the
excitatory population densities in response to this input. (b) Population density results with
fast inhibition. The firing rates of the excitatory population densities to the same input as
in (a). The only difference between (b) and the bottom panel in (a) is that τi = 8 ms for (a)
while τi is essentially 0 for (b).
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Figure 8: A comparison between population density and direct simulation firing rates for our
visual cortex simulation. Population density firing rates are plotted with a black line and
direct simulation firing rates are shown by the histograms. The population density firing
rates are from figure 7a. (a) Excitatory population with a preferred orientation of 0◦. (b)
Excitatory population with a preferred orientation of 90◦. Note the change in scale.

For figure 7a, we used slow inhibition with τi = 8 ms. In figure 7b, we show the response of the
same network to the same input where we have substituted fast inhibitory synapses, keeping
µAi

(the average integral of a unitary inhibitory conductance) fixed. After an initial transient
of activity, the firing rate for the fast inhibition model is smooth, indicating asynchronous
firing. In contrast, the firing rate for the slow inhibition model (figure 7a) exhibits non-
periodic cycles of population activity. Thus, this example demonstrates the importance of
slow inhibitory synapses to network dynamics.

In figure 8, we plot a comparison of the population density firing rates with the firing rates
of a direct simulation of the same network. As above, the direct simulation contained 1000
integrate-and-fire point-neurons per population. We averaged over two passes of the stimulus
to obtain sufficient spikes for populations with low firing rates. Figure 8 compares the firing
rates of excitatory populations with preferred orientations of 0◦ (top) and 90◦ (bottom).
The firing rates match well. The match between the populations at 0◦ is excellent, though
there is a slight timing difference in the fourth wave of activity. The binning of the direct
simulation spikes cannot show the fine temporal structure visible in the population density
firing rate. The only obvious deviation is the larger rebound in the population density than
in the direct simulation at 90◦ after t = 400 ms. However, the difference is only a couple
impulses per second, as the population is barely firing.

This example also serves to illustrate the speed of the population density approach. For
both the population density and the direct simulations above, we used a time step of ∆t = 0.5
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ms. For the population density computations, we discretized the voltage state space using
∆v = 0.25 mV. These simulations of a real time period of 500 ms with 36 populations took
22 seconds for the population density and 2600 seconds for the direct simulations (using a
Silicon Graphics Octane computer with 1 195 MHz MIPS R10000 processor). Thus, the
population density simulation was over 100 times faster than the direct simulation.

6 Discussion

Application of population density techniques to modeling networks of realistic neurons will
require extensions of the theory beyond simple integrate-and-fire neurons with instantaneous
postsynaptic conductances. We have taken a first step in this direction by adding a realistic
time course for the inhibitory postsynaptic conductance.

The major difficulty of extending the population density approach to more complicated
neurons arises from the additional dimension of the probability density function (PDF)
required for each new variable describing the state of a neuron. Each additional dimension
increases the computer time required to simulate the populations. Thus, dimension reduction
procedures like the one employed in this paper become important in developing efficient
computational methods for simulating population densities.

6.1 Analysis of dimension reduction

The dimension reduction procedure we used for this paper was inspired in part by the pop-
ulation density with mean field synapses by Treves (1993). Treves developed a model by
approximating the value of each neuron’s synaptic conductance by the mean value over the
population. Although we derive our equations by making a looser assumption (24), the re-
sulting equations are equivalent to a mean field approximation in the inhibitory conductance;
the equations depend only on the mean inhibitory conductance µG.

6.1.1 Anticipated deficiency of reduction

Because the membrane potential of a neuron can be driven below the rest potential Er only
by a large inhibitory conductance, the expected value of a neuron’s inhibitory conductance
must depend on its voltage, contrary to our independence assumption (24). Moreover, since
a larger inhibitory conductance would decrease a neuron’s voltage, one would anticipate that
the mean inhibitory conductance would be negatively correlated with the voltage, as was
sometimes seen when we set the unitary inhibitory peak conductance to unphysiologically
large values (figure 4).

The inability of our population density model to represent these correlations leads to its
systematically too low firing rates when those correlations are important (e.g., figure 2b).
Since the population density model cannot account for the dependence of µG|V (v, t) on volt-
age, it overestimates the mean inhibitory conductance for high voltages and underestimates
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it for low voltages (figure 4b) in the presence of large negative correlations. These voltage-
dependent discrepancies in the inhibitory conductance increase the fraction of neurons at
intermediate voltages in the population density model because neurons with high/low volt-
age receive artificially high/low inhibition. The fraction of neurons at both high and low
voltages is thus lower than in the direct simulation, resulting in the differences in the dis-
tribution of neurons seen in figure 4a. Since fewer neurons are near threshold and ready to
fire, the firing rate for the population density model is lower than the firing rate of the direct
simulation.

6.1.2 Analysis of results

The surprising discovery of much better accuracy than might be anticipated must be ex-
plained by decorrelating actions in the dynamics of the neurons. By analyzing the 500 single
population runs that included large inhibition, we obtained insight into both the cause of
the deterioration of the independence assumption (24) and the decorrelating actions that
help preserve the independence.

A summary of the 500 runs is plotted in figure 9. We see a confirmation in figure 9a
that unphysiologically large peak unitary inhibitory conductances are required for a large
deviation measure ∆. The range of peak conductances used for the first 10,000 runs is shaded,
the upper end of which is already larger than what is measured experimentally (Tamás et
al., 1997; Galarreta and Hestrin, 1997). The dependence of the error on the correlation
between inhibitory conductance and voltage shown in figure 9b suggests that, at least for
the single uncoupled population, the error in the population density results is indeed a result
of a violation of the independence assumption (24).

Since many runs with large peak unitary inhibitory conductance have small ∆ (figure 9a),
peak conductance size alone is not a good prediction of the accuracy of the population density
method. We searched for other quantities that were more strongly related to ∆ and would
help us better understand the source of the error. We discovered that ∆ is strongly related
to the average firing rate (figure 9c) and less reliably related to the relative strength of
inhibition over excitation (figure 9d).

Both the voltage reset after firing a spike and the voltage jumps due to excitatory input
are decorrelating actions that help preserve the independence assumption (24). The voltage
reset after a spike is particularly effective because a neuron that likely has a low inhibitory
conductance is moved to a low voltage, thus descreasing the negative correlation between
the voltage and the inihbitory conductance. As a result, a high firing rate should reduce the
correlation and thus the deviation measure, creating the relationship between firing rate and
the deviation measure seen in figure 9c.

The voltage jumps due to excitatory synaptic input also reduce the correlation between
voltage and inhibitory conductance, as the jumps are similar to diffusion with a diffusion
coefficient that contains the factor νe(t)µ

2
Ae

(Nykamp and Tranchina, 2000). The inhibitory
effects that introduce correlation are proportional to µG(t), whose quasi-steady-state value is
νi(t)µAi

. We see a moderately strong relationship (figure 9d) between the deviation measure
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Figure 9: A summary of the 500 single population runs that included large inhibition. (a) A
scatter plot of deviation measure (∆) vs. peak unitary inhibitory conductance. The shaded
region marks the range of more realistic conductance sizes used in the first 10,000 single
population simulations. (b) Error measure vs. the average (over time and neurons) of the
absolute value of the correlation coefficient between the voltage and inhibitory conductance.
(c) Error measure vs. the average firing rate. (d) Error measure vs. η as defined by (33).
For clarity, a point with η = 1650 and ∆ = 0.1 was omitted.
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and the ratio of these quantities

η =
ν̄iµAi

τm

ν̄eµ2
Ae

, (33)

where we have multiplied by τm = c/gr to make the ratio dimensionless. For the vast
majority of simulations, ∆ increases with η, though for η > 200, there are a few simulations
with higher than expected deviation measures.

The dynamics of these two decorrelating actions can be seen in individual simulations, as
shown in figure 10. In figure 10a, the correlation coefficient mimics the features of the firing
rate. Throughout the stimulus in figure 10b, including a period when the population is not
firing, the correlation coefficient reflects the excitatory input rate. When the excitatory input
rate is nearly zero around t = 650 ms, the correlation coefficient is largest in magnitude.

These two decorrelating actions are crucial for the accuracy of our population density
model. Presumably, the reason they work so well is that they help the model most during
periods when the neurons are firing. Thus, for example, the periods of highest correlation
in figure 10 occur harmlessly when the population is virtually silent.

We performed the same analysis for the two population runs. However, as expected, the
results were not as clean since ∆ is not a satisfactory deviation measure when it is large.
Moreover, for the 24 simulations with large subjective deviations, we would not expect
to observe a strong link between the decorrelating actions and the deviations since these
deviations are likely not a result of our independence assumption (24). Nonetheless, similar
relationships as in the single population case were observed (not shown). We also observed
that the probability of a large deviation increases as the coupling strength W̄ increases. This
observation is consistent with our hypothesis that network bistability may underlie some of
the observed large deviations, as strong coupling facilitates network bistability.

6.2 Non-instantaneous synapses and network dynamics

Slow inhibition may be important for proper network dynamics. For example, based on
results from rate models such as the Wilson and Cowan equations (Wilson and Cowan,
1972), one expects that the relation τi > τe, where τe is the time constant of excitatory
synapses, may be important for the emergence of oscillatory behavior. Clearly, this relation
cannot be retained when inhibition is approximated as instantaneous, and thus models with
fast inhibition may miss oscillatory behavior that is present with slow inhibition.

Oscillatory behavior was exactly what emerged in our visual cortex simulations with the
slow inhibition. The non-periodic oscillations of activity observed with τi = 8 ms (figure 7a)
were not present with fast inhibition (figure 7b). Since the excitation was fast (effectively
τe = 0 ms), the relation τi > τe would remain true even for relatively small τi. Indeed,
we observed oscillations even with τi as low as 2 ms (not shown). The oscillations began to
disappear with τi = 1 ms, and the firing rate approached the fast inhibition results (figure 7b)
as τi was made even smaller. Similar results were obtained with second order inhibition, so
these results were not peculiar to first order inhibition.
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Figure 10: Further examples of results with a single population. Panels as in figure 2. (a)
An example where the correlation coefficient is seen to mimic the firing rate. Parameters:
τi = 20.60 ms, µAe/c = 0.010, µAi

/(τigr) = 0.193, ν̄e = 1603 imp/s, ν̄i = 449 imp/s. (b) An
example where the correlation coefficient closely follows the excitatory input rate νe(t) (black
line in top panel). This is an example simulation with second order inhibition. Parameters:
τi = 79.25 ms, τs = 4.03 ms, µAe/c = 0.005, peak unitary inhibitory conductance/gr = 0.003,
ν̄e = 1843 imp/s, ν̄i = 563 imp/s.
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In networks where synapses are mainly excitatory, the time course of excitatory synapses
may play a role in network dynamics such as synchronization (Abbott and van Vreeswijk,
1993; Gerstner, 2000). Furthermore, slower NMDA (N-methyl-D-aspartate) excitatory synapses
cannot be accurately modeled as fast synapses. Thus, extending the model to include slow
excitation would be a natural next step in the development of the population density ap-
proach.

6.3 Computational speed

We have demonstrated that the population density approach can be roughly 100 times faster
than direct simulations. The speed advantage of the population density approach for slow
inhibition is even greater than the advantage for fast synapses reported earlier (Nykamp and
Tranchina, 2000). The population density simulations can be sped up even further using a
diffusion approximation (Nykamp and Tranchina, 2000).

The computational speed of the population density simulations with slow inhibition de-
pends on the reduction of the two- or three-dimensional PDF to one dimension. Further
embellishments on the individual neuron model, such as additional compartments, ionic
channels, or synaptic features, would typically increase the dimension of the PDF describing
the state space of the neuron. Using dimension reduction procedures such as the one em-
ployed here or the principal component analysis method of Knight and colleagues (Knight,
2000), one may be able to reduce the dimension of these PDFs, allowing speedy computation
of the resulting population density simulations. Thus, the population density approach may
be a useful tool for efficiently simulating large networks of not only simple integrate-and-fire
neurons but also more complicated, realistic neurons.
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Appendices

A Derivation of mean conductance evolution

In this appendix, we complete the derivation of equations for the reduced model in section 4
by deriving the evolution equation for the conditional mean conductance µG|V (v, t) and
unconditional mean conductance µG(t).
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A.1 The evolution of the conditional mean conductance

We derive an equation for the evolution of the conditional mean conductance µG|V (v, t) by
multiplying (8) by g and integrating with respect to g. Using (20), we obtain:

∂

∂t
[µG|V (v, t)fV (v, t)] = − ∂

∂v

∫
gJV (v, g, t)dg +

∫
JG(v, g, t)dg

+ δ(v − vreset)
∫

gJU(τref , g, t)dg. (34)

We used integration by parts to obtain the second term on the right hand side. The boundary
terms were zero because JG(v, g, t) = 0 for4 g = 0,∞.

Using (12) and (21), the integral of JG becomes:∫
JG(v, g, t)dg = − 1

τi
µG|V (v, t)fV (v, t) + νi(t)

∫
dg
∫ g

0
dg′F̃Ai

(τi(g − g′))ρ(v, g′, t). (35)

We change the order of integration in the integral from the last term of (35):∫ ∞

0
dg
∫ g

0
dg′F̃Ai

(τi(g − g′))ρ(v, g′, t) =
∫ ∞

0

[∫ ∞

g′
F̃Ai

(τi(g − g′))dg
]
ρ(v, g′, t)dg′

=
[∫ ∞

0

1

τi
F̃Ai

(x)dx
] [∫ ∞

0
ρ(v, g′, t)dg′

]
(36)

where x = τi(g − g′). Since F̃Ai
(x) =

∫∞
x fAi

(y)dy, where fAi
is the probability density

function for Ai, we have ∫ ∞

0
F̃Ai

(x)dx =
∫ ∞

0

[∫ ∞

x
fAi

(y)dy
]
dx

=
∫ ∞

0

[∫ y

0
dx
]
fAi

(y)dy

=
∫ ∞

0
yfAi

(y)dy

= µAi
(37)

where µAi
is the average value of Ai. Combining equations (35) – (37), the second term from

the right had side of (34) becomes:∫
JG(v, g, t)dg =

νi(t)µAi
− µG|V (v, t)

τi
fV (v, t). (38)

Using (11), the integral from first term on the right hand side of (34) can be written:∫
gJV (v, g, t)dg = −gr

c
(v − Er)µG|V (v, t)fV (v, t)

+ νe(t)
∫ v

Ei

F̃Γ∗
e

(
v − v′

Ee − v′

)
µG|V (v′, t)fV (v′, t)dv′

− 1

c
(v − Ei)µG2|V (v, t)fV (v, t). (39)

4We implicitly assume JG approaches zero faster than 1/g for large g.
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In (39), µG2|V (v, t) is defined similarly to µG|V (v, t), and we used the identity

∫
g2ρ(v, g, t)dg = µG2|V (v, t)fV (v, t). (40)

In a similar manner, equations for µGk|V fV (v, t) can be derived for all k, in which
µGk|V fV (v, t) depends on µGk+1|V fV (v, t).

A.2 The evolution of the unconditional mean conductance

With the independent mean assumption (24), we simply need to derive an equation for the
unconditional mean µG(t). Since the evolution of Gi(t) is independent of the voltage (see
equation (4)), we can immediately write down the probability density function of Gi

fG(g, t)dg = Pr{Gi(t) ∈ (g, g + dg)} (41)

and its evolution equation
∂fG

∂t
(g, t) = −∂J̄G

∂g
(g, t). (42)

The total flux across conductance J̄G is identical in form to JG (12):

J̄G(g, t) = − g

τi

fG(g, t) + νi(t)
∫ g

0
F̃Ai

(τi(g − g′))fG(g′, t)dg′. (43)

The unconditional mean µG(t) can then be written in terms of fG:

µG(t) =
∫

g fG(g, t)dg. (44)

The evolution equation for µG(t) is obtained in the same way as that of µG|V (v, t) above, so
the intermediate steps are omitted. We multiply (42) by g and integrate with respect to g
to obtain:

dµG

dt
(t) = −

∫
∂J̄G

∂g
(g, t)dg

=
∫

J̄G(g, t)dg

= − 1

τi
µG(t) + νi(t)

∫
dg
∫ g

0
dg′F̃Ai

(τi(g − g′))fG(g′, t)

=
νi(t)µAi

− µG(t)

τi

, (45)

which is equation (25).
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B A refractory state probability density function

In general, a neuron becomes refractory for a period after firing. During the refractory
period, a neuron’s voltage does not move, though its synaptic conductances evolve as usual.

The presence of a refractory period adds complications to the full population density
model. These complications stem from the fact that refractory neurons are not accounted
for in ρ(v, g, t). Since refractory neurons evolve according to different rules, we track them
by a separate probability density function fref :

fref(u, g, t)du dg = Pr{U(t) ∈ (u, u + du) and Gi(t) ∈ (g, g + dg)}, (46)

where U(t) is the time since the neuron fired. Since fref accounts for only refractory neurons
and a neuron becomes non-refractory when U(t) = τref , the function fref is defined only for
u ∈ (0, τref). Since a neuron is either refractory or accounted for in ρ(v, g, t), we have the
conservation condition∫ ∫

ρ(v, g, t)dv dg +
∫ ∫

fref(u, g, t)du dg = 1. (47)

The evolution equation of fref(u, g, t) is:

∂fref

∂t
(u, g, t) = −

(
∂JU

∂u
(u, g, t) +

∂JG′

∂g
(u, g, t)

)
, (48)

where we denote the the flux across U by JU and flux across inhibitory conductance for a
refractory neuron by JG′ . The flux across U is simply

JU(u, g, t) =
dU

dt
fref(u, g, t) = fref(u, g, t) (49)

because dU
dt

= 1 (the time since firing increases identically with time). Consequently, the
boundary condition at u = 0 is fref(0, g, t) = JV (vth, g, t) since neurons that fire immediately
become refractory.

The flux across conductance for refractory neurons, JG′(u, g, t), is identical in form to the
flux across conductance for non-refractory neurons (12):

JG′(u, g, t) = − g

τi
fref(u, g, t) + νi(t)

∫ g

0
F̃Ai

(τi(g − g′))fref(u, g′, t)dg′. (50)

Since JU(τref , g, t) is the flux of neurons becoming non-refractory, it is the source of proba-
bility at vreset in (8).

The refractory probability density function fref plays no role in the reduced model be-
cause we no longer need to track the inhibitory conductance of refractory neurons. Nonethe-
less, since fV (v, t) doesn’t integrate to 1, we still have the modified conservation condition:∫

fV (v, t)dv +
∫ t

t−τref

r(t′)dt′ = 1, (51)

which replaces (47).
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C Individual neuron simulation procedure

Numerical methods for the individual neuron simulations were similar to those of appendix
C of Nykamp and Tranchina (2000). Although the evolution of the voltage and inhibitory
conductance were no longer computed analytically between input events, the simulation was
still based on an event-driven simulation. The event-driven procedure was used because the
excitatory synaptic events were still delta functions. A time stepping algorithm where an
excitatory input did not coincide with a time step would have produced significant error.
Furthermore, since a neuron could cross threshold only at the time of an excitatory synaptic
input, the event-driven simulation generalizes easily to the slow inhibition case.

In this approach, a neuron’s voltage is calculated only when it receives synaptic input.
When a neuron receives synaptic input, its voltage and inhibitory synaptic conductance are
evolved up to the time of the input. Then either the voltage or the inhibitory conductance
are jumped up, depending if the input were excitatory or inhibitory, respectively. We used
a 2nd order Runge-Kutta method to evolve the voltage and conductance up to the synaptic
input time. For each event, the step size of the Runge-Kutta method is chosen so that the
synaptic input time coincides exactly with a time step. After each excitatory input voltage
jump, the voltage is compared with threshold to determine if the neuron spiked. If it spiked,
the voltage is reset to vreset .

This hybrid method between a time stepping algorithm and an event-driven simulation is
an efficient way to simulate the hybrid neurons with both delta function and slower synaptic
conductances.

D Parameters

We used a gamma distribution for the distribution of unitary synaptic conductance sizes
Ae/i:

fAe/i
(x) =

exp(−x/ae/i)

ae/i(ne/i − 1)!

(
x

ae/i

)ne/i−1

, (52)

where fAe/i
(x) is the probability density function of Ae/i.

For excitatory synapses, since Γ∗
e = 1 − exp(−Ae/c), the complementary cumulative

distribution function (3) for Γ∗
e is

F̃Γ∗
e
(x) = e−u(x)

ne−1∑
l=0

u(x)l

l!
, (53)

where u(x) = −(c/ae) log(1 − x).
We used a coefficient of variation of 0.5 for all A’s. Thus, once µAe/i

, the average value
of Ae/i, was chosen, the values of ae/i and ne/i were determined. For the single and two
population simulations, µAe/i

was chosen randomly. For the model of a hypercolumn in
visual cortex, we used the following: µAe = 0.008/c, µAi

= 0.027/c for excitatory neurons,
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and µAe = 0.020/c, µAi
= 0.066/c for inhibitory neurons. These values corresponded to

postsynaptic potentials that were half those used in the model by Somers et al. (1995).
For both excitatory and inhibitory neurons, we set Ei = −70 mV, Er = vreset = −65 mV,

vth = −55 mV, and Ee = 0 mV. For excitatory neurons, c/gr = τm = 20 ms and τref = 3 ms,
and for inhibitory neurons, c/gr = τm = 10 ms and τref = 1 ms. We used the parameters for
excitatory neurons for single population simulations.

For the distribution of synaptic latencies α(t), we used:

α(t) =




ᾱ
exp(−t/τα)

τα(nα − 1)!

(
t

τα

)nα−1

for 0 ≤ t ≤ 7.5 ms

0 otherwise
(54)

where nα = 9, τα = 1/3 ms, and ᾱ is a constant so that
∫

α(t)dt = 1. We used the same α
for all interactions.

For the model of hypercolumn in visual cortex, the connectivity W between two pop-
ulations depended on their difference in preferred orientation. The connectivity between a
presynaptic population of type j and a postsynaptic population of type k, for j, k ∈ {E, I},
whose preferred orientation differed by l∆θ was

Wjkl =

{
W̄jkCj exp(−|l∆θ|2/(2σ2

j )) for |l∆θ| < 60◦

0 otherwise
(55)

where Cj was a constant such that
∑

l Wjkl = W̄jk. Thus W̄jk, for j, k ∈ {E, I}, is the
average total number of synapses from all populations of type j onto each neuron of type k.
We used W̄EE = 72, W̄EI = 112, W̄IE = 48, and W̄II = 32, which were double the numbers
from Somers et al. (1995). We let σI = 60◦ and σE = 7.5◦.
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