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Abstract. We present an asymptotic analysis of two coupled linear-nonlinear systems. Through
measuring first and second input-output statistics of the systems in response to white noise input,
one can completely characterize the systems and their coupling. The proposed model is similar to a
widely used phenomenological model of neurons in response to sensory stimulation and may be used
to help characterize neural circuitry in sensory brain regions.
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1. Introduction. Most electrophysiology data from intact mammalian brains is
recorded using an extracellular electrode which remains outside neurons. When the
electrode is positioned near a neuron, it can record the neuron’s output events, called
spikes, because spike magnitudes are sufficiently large. The internal state of a neuron,
including small fluctuations in response to its inputs, cannot be measured.

When only output spikes are measurable, one cannot directly measure the effect
of a connection from one neuron to another. If neuron 1 is connected to neuron
2, then an output spike of neuron 1 will perturb the internal state of neuron 2. If
the internal state cannot be measured, this perturbation can be inferred only via its
effect on the spike times of neuron 2. In general, the spike times of a neuron will
be a function of many inputs coming from many other neurons. This complexity
makes reliable inferences on the structure of neuron circuits from spike time data a
formidable challenge.

Explicit mathematical models may lead to tools that can address this challenge.
Through model analysis, one may develop methods to infer aspects of network struc-
ture from spike times, subject to the validity of the underlying model. In this paper,
we derive a method to reconstruct the connectivity between two isolated neurons based
on a simple linear-nonlinear model (see below) of neural response to white noise. Al-
though this model greatly simplifies the reality of the brain’s neural networks, the
results from this analysis can be used to analyze neurophysiology data provided that
they are interpreted within the limitations of the model [12].

Numerous researchers have used white noise analysis to describe the response of
neurons to a stimulus. The most common use of white noise analysis has been to
analyze the response properties of single neurons [11, 4, 5, 8, 9, 2, 3, 16, 18, 7, 6].
Recently, researchers have begun to apply the techniques of white noise analysis to
simultaneous measurements of multiple neurons [15, 1, 19], although without explicitly
modeling neural connectivity. In Ref. [12], we showed how, in white noise experiments,
interpretation of spike time data is especially difficult because standard correlation
measures confound stimulus and connectivity effects. We demonstrated correlation
measures that remove the stimulus effects based on the linear-nonlinear model.

In this paper, we present the asymptotic analysis of the linear-nonlinear model
that underlies the correlation measures of Ref. [12]. Subject to a first order approxi-
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mation in the coupling magnitude, we derive a method to completely reconstruct the
coupled system from first and second input-output statistics. As a consequence of this
reconstruction, we obtain a correlation measure, which we call W, that approximates
the neuronal coupling.

Although the analysis below can be used for any pair of coupled linear-nonlinear
systems, we refer to the systems as neurons since neuroscience was the motivation of
this analysis and this choice simplifies the description.

It section 2, we describe the linear-nonlinear model. In section 3, we derive ex-
pressions for the input-output statistics for the case when the neurons are uncoupled.
We derive the corresponding expressions for the cases of unidirectional coupling in
section 4 and generalize the results to mutual coupling in section 5. We demonstrate
the method with simulations in section 6 and discuss the results in section 7.

2. The model. The standard model underlying most white noise analyses of
neural function is the linear-nonlinear model of neural response to an input X,

Pr
(

Ri = 1
∣

∣X = x
)

= g(hi · x), (2.1)

where the response Ri at discrete time point i is one if the neuron spiked and zero
otherwise. The neural response depends on the convolution of the kernel h with the
stimulus. The stimulusX is a vector whose components represent the spatio-temporal
sequence of stimulus values, such as the sequence of pixel values for each refresh of a
computer monitor.

The neural response depends on the convolution of stimulus with a kernel h, nor-
malized so that |h| = 1. The kernel can be viewed as sliding along stimulus with time;
it represents the spatio-temporal stimulus features to which the neuron responds. We
let hi denote the kernel shifted for time point i and write the convolution of the kernel
with the stimulus as the dot product hi ·X (implicitly viewing the temporal index of
the stimulus as going backward in time). The function g(·) is the neuron’s output non-
linearity (representing, for example, its spike generating mechanism). Although the
linear-nonlinear system is only a phenomenological approximation of complex biology,
it can be simply characterized by standard white noise analysis [13]. The ease of an
explicit mathematical analysis is a prime motivation for choosing the linear-nonlinear
model and white noise input.

We propose a model that augments the linear-nonlinear framework to include the
effects of neural connections between two neurons. After neuron q spikes, the prob-
ability that neuron p spikes j time steps later is modified by the connectivity factor
W̄ j
qp. In a caricature of synaptic input acting at subthreshold levels (of the voltage,

or internal state, of a neuron), the term W̄ j
qp is added underneath the nonlinearity so

that

Pr
(

Rip = 1
∣

∣X = x,Rq = rq
)

= gp

(

hip · x+
∑

j≥0
W̄ j
qpr

i−j
q

)

(2.2)

where p, q ∈ {1, 2} represent the index of the neurons, q 6= p, and Rip ∈ {0, 1} is the
response of neuron p at time i.1

1With the exceptions of W and T , we will use capital variables to denote random quantities. In
addition, we will use subscripts to denote neuron index and superscripts to denote temporal indicies.
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We assume the output nonlinearity can be approximated as an error function

gp(s) =
r̂p
2

[

1 + erf

(

s− T̄p
εp
√
2

)]

, (2.3)

where r̂p is the maximum firing rate, T̄p is the threshold, εp defines the steepness

of the nonlinearity, and erf(x) = 2√
π

∫ x

0
e−t

2

dt. Note that limx→∞ gp(x) = r̂p and

limx→−∞ gp(x) = 0. The error function nonlinearity is assumed so that we can derive
analytic results. As demonstrated in section 6, the results apply to more general
nonlinearities.

So that the input X is a discrete approximation of temporal or spatio-temporal
white noise, we let each of its n components be standard normal random variables.
We do not explicitly distinguish spatial versus temporal components of the input in
our notation because they are treated identically in the analysis. To keep the notation
simple, time is represented only by the temporal index of the kernels hip and the spikes

Rip. With this convention, the probability density function of X is simply

ρX(x) =
1

(2π)n/2
e−|x|

2/2. (2.4)

In the next sections, we consider special cases of the coupling W̄ . For each
case, we calculate the expected values of the responses E{Rip}, the “correlation”2

between the stimulus and the spikes of each neuron E{XRip}, and the “correlation”

between the spikes of the two neurons E{Ri1Ri−k2 }. Since these statistics can be
estimated when one can obtain only the spike times from the neurons, they are readily
measurable in neurophysiology experiments. We base our reconstruction of the linear-
nonlinear system of Eq. (2.2) on these input-output statistics. Most importantly, we
will reconstruct the coupling terms W̄ j

pq.

3. Uncoupled neurons. In this section, we assume that the neurons are un-
coupled so that the responses of neurons are independent conditioned on the input.3

In this case, the response probabilities obey Eqs. (2.2) and (2.3) with W̄ j
pq = 0.

The analysis of the single neuron statistics reduces to the case of individual neu-
rons. As detailed in Ref. [13], the first two input-output statistics are given by

E{Rip} =
r̂p
2
erfc

(

δpT̄p√
2

)

(3.1)

and

E{XRip} =
δp√
2π
e−

δ2pT̄
2
p

2 hip, (3.2)

where

δp =
1√

1 + ε2p
, (3.3)

2We recognize that the statistics E{XRi
p} and E{Ri

1Ri−k
2 } are not actually correlations. We

use the term since these statistics are consistently called correlations in the neuroscience literature.
We hope the reader will forgive our loose use of the term. The stimulus-spike correlation E{XRi

p}
can be thought of as the average stimulus that precedes each spike of neuron p.

3Meaning Pr
(

Ri
1 = 1&R

j
2 = 1|X

)

= Pr
(

Ri
1 = 1|X

)

Pr
(

R
j
2 = 1|X

)

.
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and erfc(x) = 1−erf(x). Note that, since both the input and the system are stationary,
the results are independent of time index i (except for the temporal index of the
linear kernel). Assuming one knew r̂p, the nonlinearities gp(·) could be computed by
estimating εp and T̄p from these statistics [13]. One could also obtain the unit vectors
hip from E{XRip}/|E{XRip}|. In this simple case, one does not even need to measure

E{Ri1Ri−k2 } to reconstruct the system.
Before we calculate an expression for E{Ri1Ri−k2 }, we define the angles between

the linear kernels, which turn out to be the only important geometry of the kernels
for white noise input. Let θ̄kpq be the angle between kernel q and kernel p shifted k
units in time

cos θ̄kpq = hi−kp · hiq. (3.4)

This angle is of course independent of time index i. (The inner product can be
represented as a cosine because kernels were normalized to be unit vectors.) Note
that θ̄−kqp = θ̄kpq. We always define the corresponding sine is by sin θ =

√
1− cos2 θ so

that sin θ ≥ 0.
For a given time shift k, without loss of generality, assume hi1 is the first unit

vector e1 (in stimulus space) and hi−k2 is a linear combination of the first two unit
vectors:4

hi1 = e1

hi−k2 = e1 cos θ̄
k
21 + e2 sin θ̄

k
21.

Assuming the nonlinearities satisfy

lim
x→−∞

gp(x) = 0, (3.5)

we compute the correlation between the spikes of neuron 1 and the spikes of neuron
2, by changing variables and integrating by parts twice. In each integration by parts,
one boundary term disappears due to Eq. (3.5), and the other boundary term is
incorporated into the complementary error functions:

E{Ri1Ri−k2 } = 1

2π

∫

g1(x1)g2(x1 cos θ̄
k
21 + x2 sin θ̄

k
21)e

− x21+x22
2 dx1dx2

=
1

2π

∫

g1(u)g2(v) exp
(

−u
2

2
− (v − u cos θ̄k21)2

2 sin2 θ̄k21

) du dv

sin θ̄k21

=
1

4

∫

g′1(u)g
′
2(v)derfc

( u√
2
,
v√
2
, cos θ̄k21

)

du dv (3.6)

where we have defined a double complementary error function

derfc(a, b, c) =
4

π

∫ ∞

a

dy e−y
2

∫ ∞

b−cy√
1−c2

dz e−z
2

. (3.7)

The function derfc is a two dimensional analogue of the complementary error func-
tion. The integral is taken over the intersection of the two half planes x · u > a

4Since stimulus is rotationally invariant, we can rotate axis so that hi
1 is parallel to the first axis

and hi−k
2 lies in the span of the first two axes. Recall that |hi

p| = 1.
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and x · v > b, where u and v are two unit vectors with inner product u · v = c.
(Here, x represents a generic vector.) Note that derfc(a, b, 0) = erfc(a)erfc(b) and
derfc(a, b, c) = derfc(b, a, c).

When the nonlinearity is an error function (Eq. (2.3)), we substitute into Eq.
(3.6) and use formula (B.8) to obtain

E{Ri1Ri−k2 } = r̂1r̂2
4

derfc

(

δ1T̄1√
2
,
δ2T̄2√

2
, δ1δ2 cos θ̄

k
21

)

. (3.8)

Eqs. (3.1), (3.2), and (3.8) are the expressions for the input-output statistics for
the simple case of uncoupled neurons.

4. Unidirectional coupling. Let the coupling from neuron 2 to neuron 1 (W̄ j
21)

be nonzero, but keep W̄ j
12 = 0. Then the probability of a spike of neuron 1 at time k

is dependent not only on the input but also on the spikes of neuron 2 for times before
k, as given by Eq. (2.2). The probability of neuron 2 spiking remains the same as in
section 3 so that the input-output statistics E{Ri2} and E{XRi2} are unchanged.

In what follows, we calculate expressions for the remaining input-output statis-
tics. We first show that effective parameters of the system can be calculated from
E{Rip} and E{XRip}. We next show how the coupling W̄ j

21 can be calculated from

E{Ri1Ri−k2 }.
We assume that W̄ j

21 is small, and compute a first order approximation by drop-

ping terms that are second order or higher in W̄ j
21. Since from now on all equalities

will be within O(W̄ 2), we will, for simplicity, use = to mean equal within O(W̄ 2).

4.1. Mean rate of neuron 1. In this section, we show that the mean rate of
neuron 1 is nearly identical to the uncoupled case of Eq. (3.1), only with the original
threshold T̄1 replaced with an effective threshold T1 to be defined below.

The general expression for the mean rate of neuron 1, calculated in Appendix
A.3, is

E{Ri1} =
1√
2π

∫

g1(u)e
−u2

2 du

+
∑

j≥0

W̄ j
21

2
√
2π

∫

g′1(u)g
′
2(v)e

−u2

2 erfc
(v − u cos θ̄k21√

2 sin θ̄k21

)

du dv. (4.1)

Note that the mean rate E{Ri1} is independent of i (as it must be).
When the nonlinearities are error functions (Eq. (2.3)), the first term is the un-

coupled mean rate (Eq. (3.1)). We use formula (B.5), to simplify the W̄ j
21 term so

that the mean rate of neuron 1 is

E{Ri1} =
r̂1
2
erfc

(

δ1T̄1√
2

)

+
r̂1r̂2δ1

2
√
2π

e−
δ21 T̄

2
1

2

∑

j≥0
W̄ j

21erfc

(

δ2T̄2 − δ21δ2T̄1 cos θ̄j21
√

1(1− δ21δ22 cos2 θ̄j21)

)

Using the Taylor series for erfc( δ1T̄1+x√
2

), we pull the second term into the error

function (making only a O(W̄ 2) error), obtaining

E{Ri1} =
r̂1
2
erfc

(

δ1T1√
2

)

, (4.2)
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where we let T2 = T̄2 and have defined the effective threshold for neuron 1:

T1 = T̄1 −
∑

j≥0

r̂2W̄
j
21

2
erfc

(

δ2T2 − δ21δ2T̄1 cos θ̄j21
√

2(1− δ21δ22 cos2 θ̄j21)

)

. (4.3)

The mean rate of neuron 1 is identical to that of an uncoupled neuron with the
effective threshold T1.

4.2. Correlation of spikes of neuron 1 with stimulus. We calculate the
general expression for the correlation between the spikes of neuron 1 with the stimulus
in Appendix A.4, obtaining

E{XRi1} =
1√
2π

[
∫

g′1(u)e
−u2

2 du

+
∑

j≥0

W̄ j
21

2

∫

g′1(u)g
′
2(v)ue

−u2

2 erfc
(v − u cos θ̄k21√

2 sin θ̄k21

)

du dv

]

hi1

+
∑

j≥0

W̄ j
21

2π

∫

g′1(u)g
′
2(v) exp

(

− u2 − 2 cos θ̄j21uv + v2

2 sin2 θ̄j21

)

du dv h
⊥ ji

21, (4.4)

where we define h
⊥ ji

21 as the component of hi−j2 that is perpendicular to hi1,

h
⊥ ji

21 =
h
i−j
2 − cos θ̄j21h

i
1

sin θ̄j21
. (4.5)

Because of the coupling, E{XRi1} is no longer parallel to the linear kernel hi1. Each
term in the last sum of Eq. (4.4) indicates how the coupling W̄ j

21 leads to a component
of E{XRi1} that is perpendicular to hi1.

When the nonlinearities are error functions (Eq. (2.3)), we use Eq. (4.5) and
formulas (B.1), (B.6), and (B.2) to obtain the following expression for the correlation
between the stimulus and the spikes of neuron 1

E{XRi1} = µ01

[

1−
∑

j≥0

r̂2W̄
j
21δ

2
1δ2 cos θ̄

j
21

√

2π(1− δ21δ22 cos2 θ̄j21)
exp

(

− [δ2T2−δ21δ2T1 cos θ̄
j
21]

2

2(1−δ21δ22 cos2 θ̄
j
21)

)

]

hi1

+ µ01
∑

j≥0

r̂2W̄
j
21δ2

√

2π(1− δ21δ22 cos2 θ̄j21)
exp

(

− [δ2T2−δ21δ2T1 cos θ̄
j
21]

2

2(1−δ21δ22 cos2 θ̄
j
21)

)

h
i−j
2 , (4.6)

where

µ0p =
r̂pδp√
2π
e−

δ2pT
2
p

2 . (4.7)

One key to obtaining Eq. (4.6) was using the exponential’s Taylor series to bring the
effective threshold T1 (4.3) into the exponential of the first term. We let T2 = T̄2 and
simply replaced T̄1 with T1 in all other terms (making an O(W̄ 2) error).

4.3. Reconstruction from the mean rate and stimulus-spike correla-

tions. Eqs. (4.2) and (4.6) give expressions for the first two input-output statistics of
the linear-nonlinear system (2.2) with unidirectional coupling. These equations show
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that the coupling has both changed the effective threshold and altered the direction
of E{XRi1} so that it is no longer parallel to the kernel hi1.

Because of these modifications, we can no longer recover T̄1 or hi1 (or cos θ̄j21)
from E{Ri1} and E{XRi1} as outlined in section 3. Nonetheless, subject to one
more assumption, one can recover the effective threshold T1, the original δ1, and
an effective angle between the kernels. As shown below, one simply views the neurons
as uncoupled and reconstructs the neuron parameters as in section 3. This procedure
does not use E{Ri1Ri−k2 }. We will be able use this last statistic to determine the

coupling W̄ j
21.

4.3.1. Effective angle between kernels. When the neurons were uncoupled,
the linear kernel hi1 could be determined by the normalized stimulus-spike correlation
E{XRi1}/

∣

∣E{XRi1}
∣

∣. Although this measurement no longer yields the kernel, we can
treat it as an effective kernel and define the effective angle between kernels by

cos θkpq =
E{XRi−kp }
∣

∣E{XRi−kp }
∣

∣

·
E{XRiq}
∣

∣E{XRiq}
∣

∣

. (4.8)

In this case of unidirectional coupling, neuron 2 is unaffected, and the effective angle
between neuron 1 and 2 is cos θk21 = hi−k2 · E{XRi1}/

∣

∣E{XRi1}
∣

∣.
We rewrite Eqs. (4.2) and (4.6) in terms of the measurable effective angle as

follows. The magnitude of the stimulus-spike correlation, within O(W̄ 2), is

∣

∣E{XRi1}
∣

∣ = µ01

[

1 +
∑

j≥0

r̂2W̄
j
21(1− δ21)δ2 cos θ̄j21

√

2π(1− δ21δ22 cos2 θ̄j21)
exp

(

− [δ2T2−δ21δ2T1 cos θ̄
j
21]

2

2(1−δ21δ22 cos2 θ̄
j
21)

)

]

(4.9)

so that

cos θk21 = cos θ̄k21 +
∑

j≥0

r̂2W̄
j
21δ2(cos θ

k−j
22 −cos θ̄j21 cos θ̄k21)√

2π(1−δ21δ22 cos2 θ̄
j
21)

exp
(

− [δ2T2−δ21δ2T1 cos θ̄
j
21]

2

2(1−δ21δ22 cos2 θ̄
j
21)

)

.

Since cos θk21 is within O(W̄ ) of cos θ̄k21, we can replace cos θ̄k21 by cos θk21 in the last
terms (making only an O(W̄ 2) error), and write cos θ̄k21 in terms of cos θk21:

cos θ̄k21 = cos θk21 −
∑

j≥0
W̄ j

21C
jk
21 , (4.10)

where

Cjkpq = (cos θk−jpp − cos θjpq cos θ
k
pq)µ

j
pq, (4.11)

µkpq =
r̂pδp exp

(

− 1
2 [λ

k
pq]

2
)

√
2π(1− δ2pδ2q cos2 θkpq)

, (4.12)

and

λkpq =
δpTp − δpδ2qTq cos θkpq√

1− δ2pδ2q cos2 θkpq
. (4.13)

Note that µ0pµ
k
pq = µ0qµ

−k
qp .
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We now make an O(W̄ 2) error by replacing cos θ̄k21 with cos θk21 in the stimulus-
spike correlation,

E{XRi1} = µ01

[(

1−
∑

j≥0
W̄ j

21δ
2
1 cos θ

j
21µ

j
21

)

hi1 +
∑

j≥0
W̄ j

21µ
j
21h

i−j
2

]

. (4.14)

and in the expression for the effective threshold (4.3),

T̄1 = T1 +
∑

j≥0
W̄ j

21η
j
21 (4.15)

where

ηkpq =
r̂p
2
erfc

(

λkpq√
2

)

. (4.16)

4.3.2. Effective nonlinearity parameters. As shown above, cos θk21, not the
original cos θ̄k21, is the measurable inner product between the kernels. We next show
that, with one additional mild assumption, the parameters T1 and δ1 are the nonlin-
earity parameters measured from E{XRi1} and E{Ri1} when treating neuron 1 as an
independent neuron as in section 3.

The magnitude of E{XRi1} is

∣

∣E{XRi1}
∣

∣ = µ01

(

1 +
∑

j≥0
W̄ j

21(1− δ21) cos θj21µj21
)

. (4.17)

This expression simplifies to µ01 if we assume that W̄ j
21δ1δ2(1 − δ21) cos θ

j
21 is small

enough to ignore. Since we have already assumed that W̄ j
21 is small, we simply need

to assume that δ2(1 − δ21) cos θ
j
21 is small to have an expression that is second order

in a small parameter. This expression is the product of three factors less than one. It
will be small if the nonlinearities are not very sharp or if the kernels of the neurons
are not nearly aligned.

With this approximation, the stimulus-spike correlation is

∣

∣E{XRi1}
∣

∣ ≈ µ01 =
r̂1δ1√
2π
e−

δ21T
2
1

2 . (4.18)

Recall that the mean rate of neuron 1 (Eq. (4.2)) is

E{Ri1} =
r̂1
2
erfc

(

δ1T1√
2

)

.

These results are the same as (3.1) and (3.2) for an uncoupled neuron with nonlinearity
parameters δ1 and T1. One can determine δ1 and T1 from these equations (assuming
r̂1 is known).

Using only E{Rip} and E{XRip} in this manner, one can calculate effective nonlin-
earity parameters of both neuron 1 and neuron 2, as well as the effective angle between
the linear kernels. We next show how the connectivity W̄21 can be determined from
the remaining input-output statistic E{Ri1Ri−k2 }.
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4.4. Correlation between spikes of neuron 1 and 2. We calculate the
general expression for the correlation between the spikes of neuron 1 and 2 in Ap-
pendix A.5, obtaining the complicated expression

E{Ri1Ri−k2 } = 1

4

∫

g′1(u1)g
′
2(u2)derfc

( u1√
2
,
u2√
2
, cos θ̄k21

)

du1du2

+
W̄ k

21

2
√
2π

∫

g′1(u1)g
′
2(u2)e

−u21
2 erfc

(u2 − u1 cos θ̄k21√
2 sin θ̄k21

)

du1du2

+
∑

j≥0,j 6=k

W̄ j
21

4
√
2π

∫

du1du2du3g
′
1(u1)g

′
2(u2)g

′
2(u3)e

−u21
2

× derfc

(

u2 − u1 cos θ̄k21√
2 sin θ̄k21

,
u3 − u1 cos θ̄j21√

2 sin θ̄j21
,
cos θk−j22 − cos θ̄j21 cos θ̄

k
21

sin θ̄j21 sin θ̄
k
21

)

.

(4.19)

When the nonlinearities are error functions (Eq. (2.3)), we simplify this expression
using three formulas ((B.8), (B.9), and (B.5)) and Eqs. (4.10), (4.15), (4.7), (4.16),
and (4.11). We use the following Taylor series expansions of derfc(a, b, c),

derfc(a+ x, b, c) = derfc(a, b, c)− 2x√
π
e−a

2

erfc
( b− ca√

1− c2
)

+O(x2)

derfc(a, b, c+ x) = derfc(a, b, c) +
2x

π
√
1− c2

e
− a2−2abc+b2

1−c2 +O(x2),

to pull terms for the effective threshold T1 and effective kernel inner product cos θj21
into the first term. All other terms are O(W̄ ), so we can simply drop the bars from
T̄1 and cos θ̄j21.

Defining

νkpq =
r̂pr̂q
4

derfc

(

δpTp√
2
,
δqTq√

2
, δpδq cos θ

k
pq

)

, (4.20)

ν̃kjpq =







ηkpq for j = k,
(r̂p)

2

4 derfc
(

λkpq√
2
,
λjpq√
2
, ξkjpq

)

otherwise,
(4.21)

and

ξkjpq =
δ2p cos θ

k−j
pp − δ2pδ2q cos θjpq cos θkpq√

(1− δ2pδ2q cos2 θjpq)(1− δ2pδ2q cos2 θkpq)
, (4.22)

the correlation between the spikes of neuron 1 and 2 becomes

E{Ri1Ri−k2 } = νk21 +
∑

j≥0
Akj21W̄

j
21 (4.23)

where

Akjpq = µ0q
[

ν̃kjpq − ηkpqηjpq + (cos θkpq cos θ
j
pq − cos θk−jpp )µkpqµ

j
pq

]

, (4.24)
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and µ0p, µ
k
pq, λ

k
pq, and ηkpq are defined in Eqs. (4.7), (4.12), (4.13), and (4.16) re-

spectively. The term νk21 in Eq. (4.23) is analogous to the correlation observed in
the uncoupled case (Eq. (3.8)), and the sum represents additional correlations due to
the coupling terms W̄ j

21. A discussion of some properties of Akjpq is given in the next
section.

The important fact to note about Eq. (4.23) is that, with the exception of the
W̄ j

21, every factor on the right hand side can be calculated from the mean rates E{Rip}
and stimulus-spike correlations E{XRip}. Eq. (4.23) can then be solved to determine

the W̄ j
21.

5. Mutual Coupling. Let both W̄ j
21 and W̄ j

12 be nonzero so that the neurons
are mutually coupled. Then the probability of a spike of neuron p at time k depends
not only on the input but also on the spikes of neuron q for times before k, as given
by Eq. (2.2).

Since we assume that W̄ j
pq is small and compute a first order approximation,

the mutual interaction results are identical to the unidirectional results of section 4
applied in both directions. The effect of neuron p on neuron q is O(W̄ ), so the effect
of neuron p on itself through neuron q is O(W̄ 2) and can be ignored. We can ignore
second (and higher) order interactions.

The mutual coupling case involves no more work beyond the unidirectional case.
The statistics for neuron 1 are unchanged, and the statistics for neuron 2 become
analogous to those for neuron 1. The expression for E{Ri1Ri−k2 } simply adds a sum

in terms of the W̄ j
12 coupling.

We summarize the model and resulting equations. We are given the system

Pr
(

Rip = 1
∣

∣X = x,Rq = rq
)

= gp

(

hip · x+
∑

j≥0
W̄ j
qpr

i−j
q

)

(5.1)

for p, q ∈ {1, 2}, q 6= p, with

gp(x) =
r̂p
2

[

1 + erf

(

x− T̄p
εp
√
2

)]

. (5.2)

We assume we know r̂p. We can reconstruct the system from the following input-
output statistics: E{Rip}, E{XRip}, and E{Ri1Ri−k2 }.

First, we calculate δp = 1/
√
1 + ε2p and an effective threshold Tp from E{Rip} and

∣

∣E{XRip}
∣

∣ using the equations5

E{Rip} =
r̂p
2
erfc

(

δpTp√
2

)

(5.3)

and

|E{XRip}| ≈ µ0p =
r̂pδp√
2π

exp

(

−
δ2pT

2
p

2

)

. (5.4)

Then, we calculate the effective angle between the kernels by

cos θkpq =
E{XRi−kp } · E{XRiq}
∣

∣E{XRi−kp }
∣

∣

∣

∣E{XRiq}
∣

∣

. (5.5)

5The fact that Tp and E{XRi
p} are given by equations analogous to Eqs. (4.15) and (4.14) is not

needed for the reconstruction.
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The last step is to calculate the coupling W̄ from the spike correlations with delays
k = −N, . . . , N ,

E{Ri1Ri−k2 } = νk21 +
∑

j≥0
Akj21W̄

j
21 +

∑

j≥0
A−kj12 W̄ j

12 (5.6)

where

Akjpq = µ0q
[

ν̃kjpq − ηkpqηjpq + (cos θkpq cos θ
j
pq − cos θk−jpp )µkpqµ

j
pq

]

,

νkpq =
r̂pr̂q
4

derfc

(

δpTp√
2
,
δqTq√

2
, δpδq cos θ

k
pq

)

,

ν̃kjpq =

{

ηkpq for j = k,
(r̂p)

2

4 derfc
(λkpq√

2
,
λjpq√
2
, ξkjpq

)

otherwise,

ηkpq =
r̂p
2 erfc

(

λkpq/
√
2
)

,

µkpq =
r̂pδp exp

(

− 1
2 [λ

k
pq]

2
)

√

2π(1− δ2pδ2q cos2 θkpq)
,

λkpq =
δpTp − δpδ2qTq cos θkpq
√

1− δ2pδ2q cos2 θkpq
,

and

ξkjpq =
δ2p cos θ

k−j
pp − δ2pδ2q cos θjpq cos θkpq

√

(1− δ2pδ2q cos2 θjpq)(1− δ2pδ2q cos2 θkpq)
.

We assume that we have chosen the number of delays (given by k = −N, . . . , N)
so that W j

21 and W j
12 for j = 0, . . . , N are all the nonzero connectivity terms of the

system. Unfortunately, even though the W̄ are the only unknowns left in the system
(5.6), we still have 2N + 2 unknowns with only 2N + 1 equations.

To reduce the number of unknowns, we simply do not attempt to distinguish W̄ 0
21

from W̄ 0
12. Although there is no reason these should be identical, the best we can do

is calculate their sum. To solve the equations, we define a new W̄ j by

W̄ j =











W̄−j
12 for j < 0,

W̄ 0
12 + W̄ 0

21 for j = 0,

W̄ j
21 for j > 0.

(5.7)

Our new equation for the W̄ is then

E{Ri1Ri−k2 } = νk21 +
∑

j

ÃkjW̄ j (5.8)

where

Ãkj =











A−k,−j12 for j < 0,
1
2 (A

−k0
12 +Ak021) for j = 0,

Akj21 for j > 0.

(5.9)
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If we let Sk = E{Ri1Ri−k2 } − νk21, we can write the solution of Eq. (5.8) for W̄ j

in matrix-vector notation as W̄ = Ã−1S, where Ã−1 denotes the matrix inverse of Ã.
This solution of Eq. (5.8) for W̄ j modifies the correlations in E{Ri1Ri−k2 } in two ways.
First, the subtraction of νk21 removes correlations due solely to the fact that neurons
are responding to the same stimulus. (See Ref. [12] for a detailed discussion.) Second,
inverting the matrix Ã eliminates the filtering of W̄ by the temporal structure of hi1
and hi2.

The relevant temporal structure of the kernels is captured by cos θ̄kpq = hi−kp · hiq.
Clearly, cos θ̄0pp = |hip|2 = 1. If, with this exception, cos θ̄kpq = 0, (so that the kernels

are orthogonal to each other and temporal shifts of themselves), then the effects of W̄
are not filtered by the kernels. Â is a diagonal matrix, and inverting Ã simply scales
the measured correlations. (Too see this fact, recall that derfc(a, b, 0) = erfc(a)erfc(b)
and that we can interchange cos θ̄kpq and cos θkpq in expressions defining A since it

appears in O(W̄ ) terms.)
As the inner products cos θ̄kpq increase, the off-diagonal elements of Ã grow. In

fact, the inner products of the kernels with themselves (cos θ̄kpp) will be close to 1 for
k near 0 if the structure of the kernels changes slowly with time. Typically, the off-
diagonal elements of Ã will still be substantially less than the diagonal elements even
with large cos θ̄kpp, and inversion of Ã will be stable. However, close examination of

equations defining Ã reveals that off-diagonals could become equal to the diagonal in
the extreme case of very sharp nonlinearities and other parameter limits. (Parameters
needed are ε1 = ε2 = 0 so that δ1 = δ2 = 1, as well as r̂1 = r̂2 = 1, cos θ̄kpp = 1 for

k 6= 0 and cos θ̄jpq = 0 for p 6= q.)6 In this case, the matrix Ã could become almost
singular, and its inversion would not be stable.

Outside this extreme case, the matrix Ã is well-conditioned, and solving Eq. (5.8)
for W̄ removes the filtering caused by the temporal structure of the kernels. Subject
to the validity of the model (5.1), the result will faithfully reconstruct the underlying
connectivity.

6. Results. To demonstrate the reconstruction procedure, we simulate a pair of
coupled linear-nonlinear neurons (Eq. (5.1)) responding to white noise input and use
the above method to estimate the parameters. We assume that the maximum output
rates r̂p are known using alternative methods such as those described in Ref. [13].
Then, from the responses Rip and the discrete white noise input X, one can estimate

E{Rip}, E{XRip}, and E{Ri1Ri−k2 } for p = 1, 2 and k = −N, . . . , N . The maximum

delay parameter N must be chosen large enough so that the E{Ri1Ri−k2 } capture the
effects of the W̄ j . In the examples, we set N = 30.

The calculations depend on estimating the inner products E{XRip} ·E{XRi−kq }.
We estimate each correlation by E{XRip} ≈ 〈XRip〉, where 〈·〉 represents averaging

over a data set. A naive estimate of the inner product by E{XRip} · E{XRi−kq } ≈
〈XRip〉 · 〈XRi−kq 〉 will be highly biased, especially when the dimension of the kernels

hip and h
i
q is large. To reduce the bias, we estimate the covariance between the factors

of each term defining 〈XRip〉 · 〈XRi−kq 〉 and subtract it from the estimate.7

For our simulations, we used kernels hip that mimic linear kernels of neurons in

6Note that limc→1 derfc(a, a, c) = 2erfc(a).
7This bias reduction is equivalent to estimating the product of expected values of two random

variables Y and Z using the formula for covariance E{Y Z} − cov(Y, Z) = E{Y }E{Z}. For more
details on bias reduction of inner products, see Appendix B of Ref. [13].
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W

Fig. 1. Estimated connectivity W (thick black line) when the nonlinearities are error functions.
For comparison, the simulated connectivity W̄ is shown with a thin gray line. W agrees quantitatively
with W̄ , though the magnitudes of the large peaks differ. Delay is in units of time and is the spike
time of neuron 1 minus the spike time of neuron 2.

visual cortex [10]. We used the spatio-temporal linear kernels of the form

hp(j, t) =

{

te−t/5 exp
(

− |j|
2

50

)

sin(0.5(j1 cosφp + j2 sinφp)) for t > 0,

0 otherwise,
(6.1)

where j = (j1, j2) is the spatial grid point and t is time. We set the spatial axis
parameters to be φ1 = 0 and φ2 = π/4. We sampled hp(j, t) on a 32 × 32 × 32
grid and normalized it to form the unit vector hip. All units are in grid points. The
detailed structure of the kernels is insignificant as the only relevant parameters from
the kernels are their inner products cos θ̄kpq.

In the first example, we set the parameters of the error function nonlinearity (Eq.
(5.2)) to r̂1 = r̂2 = 0.5, T̄1 = 1.5, T̄2 = 2.0, ε1 = 0.5, and ε2 = 1.0. The precise
parameter values are arbitrary; we chose them so that the neuron firing rates would
be low as observed in white noise experiments. The results are not sensitive to these
parameter choices. Just to illustrate the method, we set an artificial coupling of
W̄ 1

21 = 0.3, W̄ 8
21 = −1.0, W̄ 5

12 = −0.3, and W̄ 9
12 = 1.0. All other coupling terms were

set to zero. We simulated the system for 250,000 units of time, obtaining about 10,000
spikes from each neuron, a realistic number of spikes in white noise experiments [17].

To analyze the results, we assumed we knew that r̂p = 0.5 and calculated all
other parameters from the input-output statistics using the proposed method. We
focus on the estimate of the simulated connectivity W̄ , denoting by W our estimate
of the connectivity. As shown in Fig. 1, the estimate W captures all the qualitative
features of W̄ . For the lower magnitude coupling (with |W̄ | = 0.3), W also estimates
the magnitudes accurately. However, when |W̄ | = 1.0, the first order approximation
breaks down enough to cause W to overestimate the positive coupling by 20% and
underestimate the magnitude of the negative coupling by nearly 40%. (The asymme-
try between positive and negative coupling is most likely due to the low average firing
rates of 0.04 spikes per unit time; cf. Ref. [14].)
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Fig. 2. Estimated connectivity W (thick black line) when simulated power law nonlinearities
are analyzed as error functions. W agrees with the simulated connectivity W̄ (thin gray line) just
as well as in the error function case of Fig. 1.

Since the stimulus standard deviation is assumed to be one, we have effectively
scaled X, and likewise W̄ , T̄p, and εp, by the stimulus standard deviation. When
|W̄ j | = 1, it is equal in magnitude to the standard deviation of hip · X. Since in

this case the contribution of W̄ j in Eq. (5.1) is the same order of magnitude as the
contribution of hip ·X, one cannot expect the first order approximation to be valid.
Not only are estimation errors, such as those shown in Fig. 1, possible when the
coupling magnitude is sufficiently large, but W can also show additional peaks due to
the second order interactions that we ignored in section 5 (not shown).

For a second example, we demonstrate the robustness of the analysis to deviations
in the form of the nonlinearities gp. We repeat the first example, but rather than using
an error function nonlinearity, we use a power law nonlinearity,

gp(y) =

{

Apy
βp if y > 0,

0 otherwise,

with A1 = 0.07, A2 = 0.04, β1 = 2.5, and β2 = 2.0 (we truncate so that gp(x) ≤ 1).
Using the same W̄ as above, we simulated the system for 250,000 units of time,
obtaining approximately 10,000 spikes from neuron 1 and 5,000 spikes from neuron 2.

We analyze the output of the system identically to the first example. We assume
that each nonlinearity was an error function nonlinearity with r̂p = 1 and calculate the
error function parameters from E{RiP } and |E{XRip}|. The resulting error function
parameters (which include the effects from the connectivity) were ε1 = 0.76, ε2 = 1.1,
T1 = 2.2, and T2 = 3.0. As shown in Fig. 2, the method estimated the connectivity
just as well as when the simulated nonlinearity really was an error function. The
results were not sensitive to the selection of the maximum firing rate parameters, as
the calculated W was virtually identical if we set r̂p = 0.5 or r̂p = 2 and repeated the
analysis.

We repeated this test for simulations based on a wide variety of power law param-
eters Ap and βp. We were unable to find an example where the calculation of W was
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Fig. 3. Estimated connectivityW (thick black line) when the two neurons receive common input
from a third neuron. The peak at a delay of 7 units of time is due to the simulated connectivity W̄

(thin gray line). However, the peak of W at a delay of −7 is not due to connectivity between the
two neurons (W̄ = 0) but rather the common input from the third neuron.

significantly worse than in Fig. 2. Even with βp < 1 so that the derivative of gp(y)
was infinite at y = 0, the results were similar. The method simply is not sensitive to
the detailed form of the nonlinearity.

The measureW cannot distinguish between correlations caused by the connectiv-
ity assumed in Eq. (5.1) and correlations caused by other mechanisms. For example,
if the two neurons received common input from a third, unmeasured, neuron, that
connectivity would appear in the calculation of W.

To demonstrate, we simulated three coupled linear-nonlinear neurons analogous
to Eq. (5.1). We used Eq. (6.1) with φ3 = π/2 for linear kernel of the third neuron. All
three neurons had error function nonlinearities with T̄1 = 2, T̄2 = 2.5, T̄3 = 2, ε1 = 0.5,
ε2 = 1, and ε2 = 0.7. We created a connection from neuron 3 to both neurons 1 and
2 as well as a connection from neuron 2 to neuron 1. (We set W̄ 1

31 = 1.5, W̄ 8
32 = 1.5,

and W̄ 7
21 = 0.5, leaving the other connectivity terms zero.) We simulated the system

for 250,000 units of time, obtaining approximately 12,000–13,000 spikes per neuron,
and then analyzed the system as above by ignoring the output of neuron 3.

As shown in Fig. 3,W has a peak at the delay of 7 corresponding to the connection
from neuron 2 to neuron 1 (W̄ 7

21). However, W also has a peak at a delay of −7. This
second peak does not correspond to any direct connection between neuron 1 and
neuron 2 (W̄ 7

12 = 0). Instead, the peak is created because the connection from neuron
3 to neuron 2 is 7 units of time delayed compared to the connection from neuron 3
to neuron 1. Since W cannot distinguish between direct connections and common
input, it must be interpreted with care. It cannot be viewed as representing the
connectivity between the two measured neurons unless one could somehow rule out a
mutual connection from any unmeasured neurons.

7. Discussion. We derived a method for analyzing a pair of coupled linear-
nonlinear systems driven by white noise. Through measuring first and second order
input-output statistics, one can characterize the systems. In particular, one can re-
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construct the coupling between the systems if the coupling is assumed to be of a
particular form (Eq. (5.1)).

We demonstrated that the method is robust to variations in the detailed form of
the nonlinearity. We believe this robustness is due to the smoothing by the white noise
input. Each input-output statistic depends on the nonlinearities gp(·) only through
expected values over the white noise. The effect of this smoothing is most clearly
seen in the initial expression for each statistic in Appendix A. The gp(·) appear in
the integrals as either gp(h

i
p · x) or g′p(hip · x). Since the kernels are unit vectors, the

arguments of the nonlinearity are standard normals. Only the integrals of the gp(·)
over the probability density function of standard normals, not pointwise evaluation
of the gp(·), affect the input-output statistics. These integrals smooth out minor
differences between nonlinearity shapes.

Since the method is a first order approximation in the coupling magnitude, mea-
surements of large W (on the order of the standard deviation of an input component)
must be viewed cautiously. According to our simulation results, the breakdown of the
first order approximation typically leads only to deviations in the magnitude of the
estimated connectivity. However, in extreme cases, large connectivity could lead to
the emergence of second order effects in the form of additional peaks in W that do
not reflect the connectivity W̄ .

More importantly, the method cannot distinguish between the assumed mutual
coupling of the model and other mechanisms for creating correlations between the
responses, such as common input from outside sources. Measurements of W would
be evidence of mutual coupling only if other mechanisms for correlations could be
ruled out. Nonetheless, even if the source of W cannot be definitively determined,
measurement of W still could provide evidence about the time scale and magnitudes
of the interactions in the underlying neural network.

The proposed method was developed to analyze multi-electrode recordings of
neurons in response to a white noise stimulus. However, the linear-nonlinear model
assumed by the analysis is only a crude, phenomenological approximation to the bi-
ology. To better interpret the results of the method, one must be able to assign
significance to nonzero measurements of W. One future challenge is to develop meth-
ods to identify cases when nonzero measurements of W are due simply to deviations
from the linear-nonlinear model.

Appendix A. Details of derivation for unidirectional coupling.

A.1. Probability of a spike in neuron 1. Under the first order approximation
in W̄ , we can simplify Eq. (2.2) for neuron 1 to

Pr
(

Ri1 = 1
∣

∣X = x,R2 = r2
)

= g1

(

hi1 · x+
∑

j≥0
W̄ j

21r
i−j
2

)

= g1(h
i
1 · x) + g′1(h

i
1 · x)

∑

j≥0
W̄ j

21r
i−j
2 . (A.1)
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The probability of a spike in neuron 1 is then

Pr
(

Ri1 = 1
∣

∣X = x
)

=
∑

r2

Pr
(

Ri1 = 1
∣

∣X = x,R2 = r2
)

∏

̃

Pr
(

Ri−̃2 = ri−̃2 |X = x
)

= g1(h
i
1 · x)

∑

r2

∏

̃

Pr
(

Ri−̃2 = ri−̃2 |X = x
)

+ g′1(h
i
1 · x)

∑

j≥0
W̄ j

21

∑

r2

ri−j2

∏

̃

Pr
(

Ri−̃2 = ri−̃2 |X = x
)

(A.2)

The sum is over all values of r2 where each component r̃2 can be either one or zero, i.e.,
this sum is over all every possible spike combination of neuron 2. The product reflects
the assumption that, since W̄12 = 0, the responses of neuron 2, when conditioned on
the stimulus, are independent.

The total probability of any spike combination of neuron 2 must equal one,
∑

r2

∏

̃

Pr
(

Ri−̃2 = ri−̃2 |X = x
)

= 1. (A.3)

Moreover, since ri−j2 ∈ {0, 1}, only terms where ri−j2 = 1 make a contribution in the

coefficient of W̄ j
21:

∑

r2

ri−j2

∏

̃

Pr
(

Ri−̃2 = ri−̃2 |X = x
)

= Pr
(

Ri−j2 = 1|X = x
)

∑

r2 except ri−j2

∏

̃6=j
Pr

(

Ri−̃2 = ri−̃2 |X = x
)

= g2(h
i−j
2 · x). (A.4)

In the last step, we used a generalization of Eq. (A.3) excluding the i−j time interval.
Combining Eqs. (A.2), (A.3), and (A.4), the probability of a spike in neuron 1 is

Pr
(

Ri1 = 1
∣

∣X = x
)

= g1(h
i
1 · x) +

∑

j≥0
W̄ j

21g
′
1(h

i
1 · x)g2(hi−j2 · x) (A.5)

where = indicates equality within O(W̄ 2).

A.2. Probability of spike pairs. In the case of unidirectional coupling, the
probability of a spike pair is

Pr
(

Ri1 = 1&Ri−k2 = 1
∣

∣X = x,R2 = r2
)

= g1

(

hi1 · x+
∑

j≥0
W̄ j

21r
i−j
2

)

ri−k2

= g1(h
i
1 · x)ri−k2 + g′1(h

i
1 · x)ri−k2 W̄ k

21 + g′1(h
i
1 · x)ri−k2

∑

j≥0
j 6=k

W̄ j
21r

i−j
2 . (A.6)

Note that (ri−k2 )2 = ri−k2 since ri−k2 ∈ {0, 1}.
If we repeat the same procedure as in the previous section,

Pr
(

Ri1 = 1&Ri−k2 = 1
∣

∣X = x
)

=
∑

r2

Pr
(

Ri1 = 1&Ri−k2 = 1
∣

∣X = x,R2 = r2
)

∏

̃

Pr
(

Ri−̃2 = ri−̃2 |X = x
)

, (A.7)
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the only new term will be

∑

r2

ri−j2 ri−k2

∏

̃

Pr
(

Ri−̃2 = ri−̃2 |X = x
)

= g2(h
i−k
2 · x)g2(hi−j2 · x). (A.8)

Therefore,

Pr
(

Ri1 = 1&Ri−k2 = 1
∣

∣X = x
)

= g1(h
i
1 · x)g2(hi−k2 · x)

+ W̄ k
21g

′
1(h

i
1 · x)g2(hi−k2 · x)

+
∑

j≥0
j 6=k

W̄ j
21g

′
1(h

i
1 · x)g2(hi−k2 · x)g2(hi−j2 · x) (A.9)

A.3. Mean rate of neuron 1. The mean rate of neuron 1 (see Eq. (A.5)) is
given by

E{Ri1} =
1

(2π)n/2

∫

Pr
(

Ri1 = 1
∣

∣X = x
)

e−|x|
2/2dx

=
1

(2π)n/2

∫

g1(h
i
1 · x)e−|x|

2/2dx

+
∑

j≥0

W̄ j
21

(2π)n/2

∫

g′1(h
i
1 · x)g2(hi−j2 · x)e−|x|2/2dx (A.10)

The first term is identical to the uncoupled case. For the rest of the terms, we use
a different coordinate system for each j. The first unit vector is e1 = hi1, and the
second unit vector is the component of hi−j2 that is perpendicular to hi1, so that

h
i−j
2 = e1 cos θ̄

j
21 + e2 sin θ̄

j
21.

We change variables and integrate by parts (assuming Eq. (3.5)) to simplify the
jth term:

W̄ j
21

2π

∫

g′1(x1)g2(x1 cos θ̄
j
21 + x2 sin θ̄

j
21)e

− x21+x22
2 dx1dx2

=
W̄ j

21

2π

∫

g′1(u)g2(v) exp
(

−u
2

2
− (v − u cos θ̄k21)2

2 sin2 θ̄k21

) du dv

sin θ̄k21

=
W̄ j

21

2
√
2π

∫

g′1(u)g
′
2(v)e

−u2

2 erfc
(v − u cos θ̄k21√

2 sin θ̄k21

)

du dv. (A.11)

The mean rate of neuron 1 is thus

E{Ri1} =
1√
2π

∫

g1(u)e
−u2

2 du

+
∑

j≥0

W̄ j
21

2
√
2π

∫

g′1(u)g
′
2(v)e

−u2

2 erfc
(v − u cos θ̄k21√

2 sin θ̄k21

)

du dv. (A.12)
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A.4. Correlation of spikes of neuron 1 with stimulus. The stimulus-spike
correlation of neuron 1 (see Eq. (A.5)) is

E{XRi1} =
1

(2π)n/2

∫

xPr
(

Ri1 = 1
∣

∣X = x
)

e−|x|
2/2dx

=
1

(2π)n/2

∫

xg1(h
i
1 · x)e−|x|

2/2dx

+
∑

j≥0

W̄ j
21

(2π)n/2

∫

xg′1(h
i
1 · x)g2(hi−j2 · x)e−|x|2/2dx (A.13)

The first term is identical to the uncoupled case, becoming

1√
2π

∫

g′1(u)e
−u2

2 duhi1

with an integration by parts. For the rest of the terms, just as in the previous section,
we will use a different coordinate system for each j, with e1 = hi1 and e2 being the
component of hi−j2 that is perpendicular to hi1. We will denote this second unit vector
by

h
⊥ ji

21 =
h
i−j
2 − cos θ̄j21h

i
1

sin θ̄j21
. (A.14)

Note that hi−j2 = hi1 cos θ̄
j
21 +h

⊥ ji

21 sin θ̄
j
21. The jth term thus has two nonzero compo-

nents,

W̄ j
21

2π

∫

(x1h
i
1 + x2h

⊥ ji

21)g
′
1(x1)g2(x1 cos θ̄

j
21 + x2 sin θ̄

j
21)e

− x21+x22
2 dx1dx2

= W̄ j
21(Ij,1h

i
1 + Ij,2h

⊥ ji

21), (A.15)

where the above defines Ij,1 and Ij,2. We change variables and integrate by parts
(assuming Eq. (3.5)) to simplify the first component:

Ij,1 =
1

2π

∫

ug′1(u)g2(v) exp
(

−u
2

2
− (v − u cos θ̄k21)2

2 sin2 θ̄k21

) du dv

sin θ̄k21

=
1

2
√
2π

∫

g′1(u)g
′
2(v)ue

−u2

2 erfc
(v − u cos θ̄k21√

2 sin θ̄k21

)

du dv. (A.16)

To simplify Ij,2, we first integrate by parts in the x2 variable, then change variables:

Ij,2 =
1

2π

∫

g′1(x1)g
′
2(x1 cos θ̄

j
21 + x2 sin θ̄

j
21) sin θ̄

j
21e

− x21+x22
2 dx1dx2

=
1

2π

∫

g′1(u)g
′
2(v) exp

(

− u2 − 2 cos θ̄j21uv + v2

2 sin2 θ̄j21

)

du dv. (A.17)
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Combining these results, the stimulus-spike correlation of neuron 1 is

E{XRi1} =
1√
2π

[
∫

g′1(u)e
−u2

2 du

+
∑

j≥0

W̄ j
21

2

∫

g′1(u)g
′
2(v)ue

−u2

2 erfc
(v − u cos θ̄k21√

2 sin θ̄k21

)

du dv

]

hi1

+
∑

j≥0

W̄ j
21

2π

∫

g′1(u)g
′
2(v) exp

(

− u2 − 2 cos θ̄j21uv + v2

2 sin2 θ̄j21

)

du dv h
⊥ ji

21 (A.18)

A.5. Correlation between spikes of neuron 1 and 2. The correlation be-
tween spikes of neuron 1 and neuron 2 is (see Eq. (A.9))

E{Ri1Ri−k2 } = 1

(2π)n/2

∫

Pr
(

Ri1 = 1&Ri−k2 = 1
∣

∣X = x
)

e−
|x|2

2 dx

=
1

(2π)n/2

∫
[

g1(h
i
1 · x)g2(hi−k2 · x)

+ g′1(h
i
1 · x)g2(hi−k2 · x)

(

W̄ k
21 +

∑

j≥0,j 6=k
W̄ j

21g2(h
i−j
2 · x)

)

]

e−
|x|2

2 dx.

(A.19)

The first term is identical to the uncoupled case (Eq. (3.6)). The W̄ k
21 term is identical

to Eq. (A.11).

For the W̄ j
21 terms with j 6= k, we let e1 = hi1 and e2 = h

⊥ki

21, and let the third

unit vector be the component of hi−j2 perpendicular to both e1 and e2 so that

h
i−j
2 = e1 cos θ̄

j
21 + e2c

kj
21 sin θ̄

j
21 + e3 sin θ̄

j
21

√

1− (ckj21)
2

where

ckj21 = h
⊥ki

21 · h
⊥ ji

21 =
cos θk−j22 − cos θ̄k21 cos θ̄

j
21

sin θ̄k21 sin θ̄
j
21

.

Denoting the W̄ j
21 terms in Eq. (A.19) by W̄ j

21Ikj and changing variables, we compute

Ikj =
1

(2π)3/2

∫

g′1(x1)g2(x1 cos θ̄
k
21 + x2 sin θ̄

k
21)

× g2
(

x1 cos θ̄
j
21 + x2c

kj
21 sin θ̄

j
21 + x3 sin θ̄

j
21

√

1− (ckj21)
2
)

e−
x21+x22+x23

2 dx1dx2dx3

=
1

(2π)3/2

∫

du1du2du3g
′
1(u1)g2(u2)g2(u3)

sin θ̄k21 sin θ̄
j
21

√

1− (ckj21)
2

× exp

(

−u
2
1

2
− (u2 − u1 cos θ̄k21)2

2 sin2 θ̄k21
−

[u3−u1 cos θ̄j21
sin θ̄j21

− ckj21
u2−u1 cos θ̄k21

sin θ̄k21

]2

2[1− (ckj21)
2]

)

.

Using Eq. (3.5) and integrating by parts twice as in the derivation of Eq. (3.6), we



COUPLED LINEAR-NONLINEAR SYSTEMS 21

simplify this expression to

Ikj =
1

4
√
2π

∫

g′1(u1)g
′
2(u2)g

′
2(u3)e

−u21
2

× derfc

(

u2 − u1 cos θ̄k21√
2 sin θ̄k21

,
u3 − u1 cos θ̄j21√

2 sin θ̄j21
, ckj21

)

du1du2du3. (A.20)

The correlation between spikes of neuron 1 and neuron 2 is therefore

E{Ri1Ri−k2 } = 1

4

∫

g′1(u1)g
′
2(u2)derfc

( u1√
2
,
u2√
2
, cos θ̄k21

)

du1du2

+
W̄ k

21

2
√
2π

∫

g′1(u1)g
′
2(u2)e

−u21
2 erfc

(u2 − u1 cos θ̄k21√
2 sin θ̄k21

)

du1du2

+
∑

j≥0,j 6=k

W̄ j
21

4
√
2π

∫

du1du2du3g
′
1(u1)g

′
2(u2)g

′
2(u3)e

−u21
2

× derfc

(

u2 − u1 cos θ̄k21√
2 sin θ̄k21

,
u3 − u1 cos θ̄j21√

2 sin θ̄j21
,
cos θk−j22 − cos θ̄j21 cos θ̄

k
21

sin θ̄j21 sin θ̄
k
21

)

.

(A.21)

Appendix B. Formulas used in derivations. In all formulas, each sine is
assumed to be positive.

The formulas

1

εp
√
2π

∫∫

exp
(

− (x− Tp)2
2ε2p

− x2

2

)

dx = δpe
− δ2pT

2
p

2 (B.1)

and

1

2πεpεq

∫∫

exp
(

− (x− Tp)2
2ε2p

− (y − Tq)2
2ε2q

− x2 − 2xy cos θ + y2

2 sin2 θ

)

dx dy

=
δpδq sin θ√

1− δ2pδ2q cos2 θ
exp

(

−
δ2pT

2
p − 2δ2pδ

2
qTpTq cos θ + δ2qT

2
q

2(1− δ2pδ2q cos2 θ)
)

, (B.2)

where δq = 1/
√
1 + ε2q, follow from the application of

∫

exp(−[ax2 + bx+ c])dx =

√

π

a
exp

( b2

4a
− c

)

for a > 0.
For the following two formulas, change variables in the double integral so that

one of the new variables is parallel to the line u = dx+ f (where u is the integration
variable of the erfc(·)). By completing the square in the resulting integrands, one can
derive both

∫

exp(−[ax2 + bx+ c])erfc(dx+ f)dx =

√

π

a
exp

( b2

4a
− c

)

erfc
( 2af − bd
2
√

a(a+ d2)

)

(B.3)
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and
∫

x exp(−[ax2 + bx+ c])erfc(dx+ f)dx

= −1

a
exp

( b2

4a
− c

)

[d exp
(

− (2af−bd)2
4a(a+d2)

)

√
a+ d2

+
b
√
π

2
√
a
erfc

( 2af − bd
2
√

a(a+ d2)

)

]

(B.4)

for a > 0. By applying Eq. (B.3) twice, one can show that

1

2πεpεq

∫∫

exp
(

− (x− Tp)2
2ε2p

− (y − Tq)2
2ε2q

− x2

2

)

erfc

(

y − x cos θ√
2 sin θ

)

dx dy

= δpe
− δ2pT

2
p

2 erfc

(

δqTq − δ2pδqTp cos θ√
2(1− δ2pδ2q cos2 θ)

)

, (B.5)

and by applying both Eq. (B.3) and Eq. (B.4), one can show that

1

2πεpεq

∫∫

x exp
(

− (x− Tp)2
2ε2p

− (y − Tq)2
2ε2q

− x2

2

)

erfc

(

y − x cos θ√
2 sin θ

)

dx dy

= δ3pTpe
− δ2pT

2
p

2 erfc

(

δqTq − δ2pδqTp cos θ√
2(1− δ2pδ2q cos2 θ)

)

+
2δpδq(1− δ2p) cos θ√
2π(1− δ2pδ2q cos2 θ)

exp
(

−
δ2pT

2
p − 2δ2pδ

2
qTpTq cos θ + δ2qT

2
q

2(1− δ2pδ2q cos2 θ)
)

. (B.6)

For the following formula, let u be the integration variable of the erfc(·). Then,
change variables in the triple integral so that the first variable is parallel to the line
y = dx + f and a linear combination of the first and second variables is parallel to
the line u = gx+ h− ky. By repeatedly completing the square in the integrand, one
can derive that

∫

dx exp(−[ax2 + bx+ c])

∫ ∞

dx+f

dye−y
2

erfc(gx+ h− ky)

=
√

π
a e

( b
2

4a−c)
∫ ∞

2af−bd

2
√

a(a+d2)

e−u
2

erfc
(

(2ha−bg)
√
a+d2−2√a(gd+ka)u

2a
√

(kd−g)2+a+d2

)

du (B.7)

for a > 0. Repeated application of Eq. (B.7), combined with extensive algebra, yields

1

2πεpεq

∫∫

exp
(

− (x− Tp)2
2ε2p

− (y − Tq)2
2ε2q

)

derfc
( x√

2
,
y√
2
, cos θ

)

dx dy

= derfc

(

δpTp√
2
,
δqTq√

2
, δpδq cos θ

)

(B.8)

and

1

(2π)3/2εpε2q

∫∫∫

exp

(

− (x− Tp)2
2ε2p

− (y − Tq)2
2ε2q

− (z − Tq)2
2ε2q

− x2

2

)

× derfc

(

z − x cos θ√
2 sin θ

,
y − x cosφ√

2 sinφ
,
cosψ − cos θ cosφ

sin θ sinφ

)

dx dy dz

= δpe
− δ2pT

2
p

2 derfc
(

δqTq−δ2pδqTp cos θ√
2(1−δ2pδ2q cos2 θ)

,
δqTq−δ2pδqTp cosφ√
2(1−δ2pδ2q cos2 φ)

,
δ2q cosψ−δ2pδ2q cos θ cosφ√

(1−δ2pδ2q cos2 θ)(1−δ2pδ2q cos2 φ)

)

(B.9)
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where derfc(·) is defined by Eq. (3.7).
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