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Abstract

We present an approach to obtain nonlinear information about neuronal response by com-
puting multiple linear approximations. By calculating local linear approximations centered
around particular stimuli, one can obtain insight into stimulus features that drive the re-
sponse of highly nonlinear neurons, such as neurons highly selective to a small set of stimuli.
We implement this approach based on stimulus-spike correlation (i.e., reverse correlation or
spike-triggered average) methods. We illustrate the benefits of these linear approximations
with a simplified two-dimensional model and a model of an auditory neuron that is highly
selective to particular features of a song.

1 Introduction

Many sensory neurons respond to stimuli in a highly nonlinear fashion. For example, neurons
have been reported to be highly selective to particular classes of stimuli such as faces [4] or a
bird’s own song [14]. It is a challenge to understanding the origin of such properties because
it is difficult to develop analysis techniques that give insight into strongly nonlinear response.

Many commonly used analysis techniques assume neuronal response is fundamentally
linear. Such methods estimate the direction in stimulus space (the linear kernel) that leads
to the greatest modulation in the neuron’s response. For example, one can calculate the
correlation between the stimulus and the neuron’s spikes (often referred to as reverse cor-
relation or the spike-triggered average) [3, 17, 6, 10], calculate the stimulus direction that
maximizes mutual information between the neuron’s response and projection of the stimulus
onto the direction [29], or fit the response to generalized linear models [21]. A linear model
predicts that a neuron’s response is modulated by the projection of the stimulus in only one
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direction in stimulus space. Since any modification of the stimulus that leaves that projec-
tion unchanged will not alter the response of a linear model, linear models cannot capture
the high degree of selectivity needed for faces or a bird’s own song.

The manner in which one typically applies such linear techniques implicitly assumes
a reference point near the origin in stimulus space. The analyses obtain linear kernels
that point along directions emanating from the origin due to that fact that they employ
stimulus ensembles that are centered near the origin. Typically, the stimulus ensembles are
symmetric about the origin, or symmetric among the directions contained in the positive
orthant (due to a constraint that all stimulus components must be positive). The result is a
linear approximation of the neural response that is centered around the origin.

For a nonlinear neuronal response, the linear approximation will depend strongly on the
location in stimulus space around which one builds the stimulus ensemble. A neuron could
have multiple operating regimes where its behavior changes dramatically depending on the
location in stimulus space. If so, analyses based around different locations in stimulus space
would obtain different stimulus directions (i.e. linear kernels), reflecting the different stimulus
features that most strongly modulate the neuron’s response. Each linear approximation
would be an equally valid description of the neuron’s response, capturing the response of
the neuron to stimuli near its reference point. The key point is that by computing linear

approximations around different points, one could obtain further insight into the nonlinear

behavior of the response.
Experiments have shown that linear kernels can change by considering different operating

points. In songbirds, there are systematic differences between linear kernels computed from
natural versus synthetic stimulus ensembles [30]. Further, these changes in linear kernels
can provide information about nonlinearities. In cat inferior colliculus, the dependence of
estimated linear kernels on the operating point revealed the nonlinearity in the processing
of auditory signals [12].

In this paper, we outline a general framework for understanding how linear kernels de-
pend on operating point and present a method to compute linear approximations of neuronal
response that are not centered around the origin. We describe how to use these approxi-
mations to capture nonlinear effects. In section 2, we review the basic concept of a linear
approximation from multivariable calculus. In section 3, we describe an algorithm for cal-
culating such a linear approximation from measurements of neuronal spiking response to
appropriately chosen stimuli. We demonstrate the results with a simple two-dimensional
example in section 4 and with a more realistic high-dimensional example in section 5. We
discuss the results in section 6.

2 The linear approximation

Imagine that one was probing the response of a neuron to a stimulus consisting of two
adjacent bars. Let x and y represent the luminances of the bars relative to a background
level in some arbitrary units. Assume for simplicity that the response of the function depends
only on x and y, and let f(x, y) represent the spiking rate of the neuron in response to the
stimulus x and y.

Since f is a function of just two variables, we can easily plot it. Suppose that f was a
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Figure 1: Plots of an example two-dimensional function f(x, y) and its linear approximations.
A. The function f(x, y) indicates the spiking rate of an imaginary neuron in response to
two bars of luminance x and y, respectively. Color scale is shown at right. Units are
arbitrary. White circle and square indicates points around which the linear approximations
were computed. B. Linear approximation of f(x, y) computed at the point (x, y) = (6, 0),
shown as white circle. C. Linear approximation computed at the point (x, y) = (0,−6),
shown as a white square. Linear approximations closely match behavior of f(x, y) around the
points where they were computed. Negative values of linear approximations were truncated
to zero.

highly nonlinear function of x and y, such as the function illustrated by a pseudocolor plot
in figure 1A. This function indicates that the neuron will have the strongest response when
both bars are bright (i.e., if x and y are both large). On the other hand, if the second bar
is dark (i.e., large negative y), then the neuron will also response relatively strongly as long
as the first bar is not bright (i.e., x is zero or negative).

The global structure of f(x, y) cannot be captured by any linear approximation. The
plot of any linear function of two variables is a plane, which clearly cannot have two peaks.
Nonetheless, linear approximations are very good at capturing local structure of (smooth)
functions. One can compute a linear approximation around an operating point (x0, y0) that
matches f(x, y) in the neighborhood of (x0, y0).

In multivariable calculus, one learns that the linear approximation of a multivariable
function F (x) of vector x ∈ Rn calculated at a point a ∈ Rn is

L∇(x) = F (a) + ∇F (a) · (x − a). (1)

The gradient ∇F (x) is the vector of all the partial derivatives of F at x. L∇ is a very good
approximation of F near a, but it may be a poor approximation for more distant points.
In practice, one may replace the gradient vector ∇F (a) in (1) with another vector h(a)
obtaining a linear approximation

L(x) = F (a) + h(a) · (x − a). (2)

If h(a) 6= ∇F (a), then L will be worse than L∇ at approximating values of F (x) near a.
However, one may choose an h(a) so that L better approximates F (x) at points further away
from a.
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A key point is the linear approximation L could depend strongly on the point a around
which it was calculated. In the two-dimensional example of figure 1, one could calculate linear
approximation around different operating points to capture different features of the f(x, y).
For example, a linear approximation around (x, y) = (6, 0) could show how f(x, y) increases
with increasing y when x is large (figure 1B). On the other hand, a linear approximation
around (x, y) = (0,−6) could indicate that decreasing y will increase the function when
operating around a point where y is negative (figure 1C).

In this paper, we show how one can easily calculate such linear approximations of neuron’s
response to a stimulus. By calculating linear approximations around differing points, one
can obtain insight into the nature of the neuron’s response to a stimulus. In the following
section, we outline how standard stimulus-spike correlation analyses can be used to compute
such linear approximations.

3 Calculating linear approximations of neuronal re-

sponse to a stimulus

As a starting point for our analysis, we will approximate the spiking probability of a neuron
as a function purely of a stimulus. In particular, since we ignore how a neuron’s spiking
probability can be modulated by its own spiking history, we approximate the firing times
of a neuron as a inhomogeneous Poisson process. (Such an approximation is implicit when
employing stimulus-spike correlation analyses.)

Unlike typical approaches that employ stimulus-spike correlation, we do not postulate a
fundamentally linear response to the stimulus or sensitivity to just one direction of stimulus
space. Instead, we will allow a neuron’s spiking probability to be an arbitrary function of
the stimulus. Let the vector X represent the recent stimulus, i.e. the stimulus at as many
previous time steps as influence the neuron’s spiking probability. We fix some time bin
relative to the stimulus, and let the random variable R represent the number of spikes the
neuron fires in that time bin.1

We model the probability distribution of R as a Poisson distribution whose mean is
F (X), some unknown function of the stimulus. In other words, we assume the probability
distribution of R conditioned on the stimulus X is

Pr(R |X) = Γ(R,F (X)), (3)

where Γ(n, λ) = 1
n!

λne−λ is the Poisson distribution with mean λ.
Note that we do not assume a particular functional form of F (X). The response function

F (X) could be some highly nonlinear function of the stimulus X. We only require that F (X)
is a differentiable function of X.

The function F (X) captures how the recent stimulus determines the spiking probability.
If X is high-dimensional, we have no hope of sampling F (X) over all possible stimuli and
estimating it directly. To make progress, one typically restricts F (X) to a small class of
models and attempts to determine the parameters of the model.

1Clearly the distribution of R depends on the time bin chosen.
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Rather than postulating a form for F (X) that is valid for all X, we instead focus on
describing the behavior of F (X) when the stimulus is similar to some reference stimulus
x̂. Since we restrict ourselves to finding such a local approximation of F (X) that is valid
only for X close to x̂, we can employ a linear approximation of F (X) in order to study its
properties.

We use stimulus-spike correlation to estimate the linear approximation of F (X). To
probe the response of the neuron for X near x̂, we create many realizations of a stimulus X

that are equal to the reference stimulus x̂ plus some noise Z. If the magnitude of the noise
Z is sufficiently small, then the average response of the neuron will be well represented by
the linear approximation (1) evaluated around a = x̂,

F (X) = F (x̂ + Z) ≈ F (x̂) + ∇F (x̂) · Z. (4)

Since F (X) is an unknown function, we don’t know the scale at which the local linear ap-
proximation (4) is valid. Moreover, there are practical limits on how small one can make
magnitude of the noise Z and still reliably detect how the noise is modulating the response
of the neuron. Hence, we don’t view the local linear approximation (4) as the linear ap-
proximation that will best capture the response of the neuron to X. Instead, we allow our
approximation to vary from the linear approximation of multivariable calculus and view the
response of the neuron as being approximated by the more general linear equation

F (X) = F (x̂ + Z) ≈ µR(x̂) + h̄(x̂) · Z, (5)

where h̄(x̂) is a linear kernel and µR(x̂) is the average value of R in response to X. Note
that both h̄(x̂) and µR(x̂) will depend on the statistics of the noise Z (as well as the mean
stimulus x̂), though the notation does not make this fact clear.

We can use standard stimulus-spike correlation techniques to estimate the linear kernel
[30]. For completeness, we sketch the well-known result that one can estimate the linear
kernel by correlating the neuron’s response R with the noise Z (assumed to be mean zero,
as one can incorporate the mean into x̂). Taking the expected value of (3) conditioned on
the stimulus X, we see that E(R |X) = F (X). Combining this with (5), we obtain that

E(R |X) − µR(x̂) ≈ h̄(x̂) · Z.

Multiplying by the noise Z and taking the expected over all values of the noise, we calculate
that

E(Z(R − µR(x̂))) ≈ E(Z(h̄(x̂) · Z)) = CZh̄(x̂), (6)

where CZ is the (known) covariance matrix of the noise Z.
Therefore, to estimate the linear kernel, we average Z(R − µR(x̂)) over the experiment,

then divide by the covariance matrix CZ. We obtain the estimate of the linear kernel,

h(x̂) = C−1
Z

〈Z(R − µR(x̂))〉 = C−1
Z

〈(X − x̂)(R − µR(x̂))〉, (7)

where 〈·〉 indicates the average over the experiment and µR(x̂) = 〈R〉. We have dropped the
bar off of h to indicate that it is the estimate of h̄ obtained from an experiment.
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Note that h(x̂) is almost identical to the weighted spike-triggered average estimate of
a linear kernel, which is2 C−1

Z
〈Z|R = 1〉 = C−1

Z
〈ZR〉/〈R〉. Ignoring the proportionality

constant 1/〈R〉, the only difference is that we have subtracted off the mean response µR(x̂).
Moreover, since E(Z(R − c)) = E(ZR) for any real number c (as the noise Z is mean zero),
the expected value of h(x̂) is identical to that of the weighted spike-triggered average. So
the natural question is why we have left µR(x̂) in our formula (7).

The reason we use (7) as written is because we are interested in exploring the behavior
of neurons around stimuli x̂ that may already elicit is significant response from the neurons.
The actual mean response µR(x̂) may be a large number. Although setting µR(x̂) to zero in
(7) does not alter the expected value of our estimator h(x̂), it will change the variance. In
fact, we show that using µR(x̂) in (7) minimizes the variance of our estimate h(x̂), provided
that we can neglect any skew in the noise Z and neglect any deviation of the neuronal
response from a linear approximation of the form (5).

To demonstrate that using µR(x̂) minimizes the variance of h(x̂), we first minimize the
variance of the estimator 〈Z(R−c)〉 over real numbers c. Let n denote the number of samples
in the experiment; let Zi and Ri denote the values of noise and neuron response, respectively,
in sample i. Then, we can write

〈Z(R − c)〉 =
1

n

n
∑

i=1

Zi(Ri − c).

Clearly the expected value of this estimator is E(〈Z(R − c)〉) = E(ZR), independent of c.
To calculate the covariance matrix of this estimator, we compute

E(〈Z(R − c)〉〈ZT (R − c)〉) = E

(

1

n2

n
∑

i,j=1

ZiZ
T
j (Ri − c)(Rj − c)

)

=
1

n
E
(

ZZT (R − c)2
)

+
n − 1

n
E(ZR)E(ZT R),

where for the last step, we separated out the n terms where i = j from the n(n − 1) terms
where i 6= j. Since we assume samples are independent, we can factor out the expected
values of the latter terms. Subtracting off E(ZR)E(ZT R), we obtain that the the covariance
matrix of our estimator is

1

n

[

E
(

ZZT (R − c)2
)

− E(ZR)E(ZT R)
]

.

We look for critical points by differentiating with respect to c and setting the result to zero.
We find that c must satisfy E(ZZT 2(R − c)) = 0, or

cCZ = E(ZZT R). (8)

This is an overdetermined system for c, and one would not expect the same value of c to be
a critical point for each component of the covariance matrix. However, if we assume that
the mean of R given the noise Z is given by (5) and we neglect any skew of Z, then

E(ZZT R) ≈ E(ZZT (µR(x̂) + h̄(x̂) · Z)) ≈ CZµR(x̂).

2We assume one takes the average of just the mean zero noise Z triggered on the event of a spike and
that at most one spike occurs in the bin.
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Therefore, setting c = µR(x̂) satisfies (8), showing this value of c is a critical point for all
components of the covariance matrix of 〈Z(R − c)〉.

Finally, we observe that each component of the estimator C−1
Z

〈Z(R−c)〉 is simply a linear
combination of the components of 〈Z(R−c)〉. This implies each component in the covariance
matrix of the former is a linear combination of components of the covariance matrix of the
latter. Consequently, c = µR(x̂) is also a critical point for all components of the covariance
matrix of C−1

Z
〈Z(R − c)〉. Since the variance terms (the diagonal components) are positive

and quadratic in c, we conclude that the choice c = µR(x̂) in our definition of h(x̂) minimizes
the variance of the estimator.

We emphasize that in this context, we cannot talk about the linear kernel that captures
the response of a neuron. Since the calculated linear kernel h(x̂) depends on choice of
reference stimulus x̂, we obtain a whole family of kernels that, combined with the linear
approximation (5), capture the neural response around each operating point x̂. The linear
kernel h(x̂) represents which stimulus features modulate the neuron’s response when the
stimulus is close to x̂. Typically, we are concerned only with the direction of h(x̂) (not
its length) because the direction is enough to specify these stimulus features. So, unless
specified otherwise, we will normalize h(x̂) to a unit vector.

4 Demonstration with two-dimensional example

We demonstrate the calculation of linear approximations with two examples. The first
example is a two-dimensional model that is simplistic but more easily visualized. The second
example is a 50-dimensional model of a highly selective neuron that is more realistic but less
easily visualized.

The two-dimensional example is the visual neuron from section 2 with spiking probability
f(x, y) that is a function only of the luminances x and y of two bars. The neuron responds
most strongly if both x and y are large, and the neuron also responds moderately strongly
if y takes on a large negative value while x is zero or negative. Explicitly,

f(x, y) = c1g(a1(x − b1)) + c2g(a2(y − b2))g(a3(x − b3)) + c4g(a4(y − b4))g(a5(x − b5)) (9)

where g(x) = 1/(1 + e−x) is a sigmoidal function. We set the parameters3 so that the first
term created an overall bias for larger values of x, the second term created a large peak of
f(x, y) for large x and y, and the third term created a smaller peak for negative values of x
and y. A plot of f(x, y) was shown in figure 1A. Our goal with this example is to compare
f(x, y) to what we can recover about f(x, y) by linear approximation.

4.1 Different linearizations reveal different features

In this section, we will illustrate how the linear approximation depend on reference point
and noise statistics. In these computations, we will use a huge number of realizations (n =
100,000) to ensure the results did not depend on the amount of data available. We will
discuss the effects of lowering n in section 4.2.

3The parameters were a1 = a2 = a3 = 0.5, a4 = a5 = −0.5, b1 = b5 = 3, b2 = b3 = 4, b4 = −6, c1 = 0.5,
c2 = 5, and c4 = 3.
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First, we explore how the response properties of this neuron would be detected by a
linear approximation centered at the origin, i.e. the way in which one usually employs the
spike-triggered average. Since x̂ = (0, 0), we stimulate the neuron with Gaussian white noise
(X,Y ) = Z, where each component has standard deviation σ. For each of n realizations of
the noise, we calculate the response R according to (3) with F = f(X,Y ). We then calculate
the linear kernel h(0, 0) according to (7).4 With σ = 1, the linear kernel is h(0, 0) ≈ (.9,−.4).
Since the magnitude of the noise was small compared with the structure of f(x, y), h(0, 0)
points approximately in the same direction as the gradient ∇f(0, 0). With σ = 10, the kernel
points is h(0, 0) ≈ (0.998, 0.06). The larger noise smears the function f so both peaks in f
influence the linear approximation. The upward pull of the tall narrow peak in the upper
right effectively balances the downward pull of the low broad peak in the lower left, and
the kernel points almost entirely in the positive x direction. Both linear kernels calculated
at around the origin are shown by the arrows coming from the diamond (�) in figure 2A.
Both calculations indicate the neuron may prefer positive x. Neither calculation reveals that
the neuron would respond most strongly to the combination of large x and y values. It
appears that the neuron prefers negative y values (σ = 1 case) or that the value of y does
not influence the neuronal response (σ = 10 case).

Next, we compute a linear approximation around a different stimulus x̂ to examine how
the stimuli around that point influence the neuronal response. To do so, we add noise on top
of the base stimulus x̂, stimulating the neuron with (X,Y ) = x̂ + Z. As before, for each of
n realizations of the noise, we calculate the response R according to (3) with F = f(X,Y ),
and compute the linear kernel using (7).

For example, imagine that we knew (either from the above linear kernels at (0, 0) or
from other experiments) that a positive luminance x of the first bar causes the neuron to
respond strongly. We might take x̂ = (6, 0). With weak noise of σ = 1, the kernel estimate
is h(6, 0) ≈ (.5, .9), and with strong noise of σ = 10, the kernel estimate is h(6, 0) ≈ (.6, .8).
Both linear kernels are shown by arrows coming from the circle (•) in figure 2A. In this case,
the direction the linear kernel changes little with the magnitude of the noise used. Both
estimates of h(6, 0) point toward the peak of large x and y values and indicate that, if we
start with a large value of the first bar’s luminance x, then we can increase the neuron’s
response even further by also increasing the luminance y of the second bar. Hence the linear
approximation around x̂ = (6, 0) revealed features of the neuron’s response properties that
were invisible with the typical spike-triggered average that is centered at the origin.

If we start with a negative value of y, we obtain different information. For x̂ = (0,−6),
the linear kernel computed with either weak (σ = 1) or strong (σ = 10) noise was h(0,−6) ≈
(−.2,−.97) . Both kernels are shown as arrows coming from a square (�) in figure 2A. These
linear approximations point in the direction of the broad peak for negative y and moderately
negative x.

The choice of noise can dramatically affect the direction of the kernel. As shown by the
arrows coming from the star (⋆) in figure 2A, the estimates of the kernel h(4,−5) based
on weak (σ = 1) and strong (σ = 10) noise point in nearly opposite directions. The point
x̂ = (4,−5) is at the base of the lower peak in f(x, y), and the gradient ∇f(4,−5) points
up the peak, i.e., downward and to the left. The linear kernel computed with weak noise is

4Since the noise was white, the covariance matrix was CZ = σ2I, where I is the 2 × 2 identity matrix.
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A B

Figure 2: Estimates of linear kernel vary with location and noise magnitude. A. Linear
kernel estimates for weak noise σ = 1 (short white arrow) and strong noise σ = 10 (long
black arrow) for linear approximations at (0, 0) (�), at (6, 0) (•), at (−6, 0) (�), and at
(4,−5) (⋆) as described in section 4.1. Both linear kernels calculated at origin indicate
that firing rate increases with x but miss the positive y component of large peak. Both
estimates of h(6, 0) point toward the global maximum. Estimates of h(−6, 0) indicate the
location of the smaller peak. The estimate of h(4,−5) depends on size of noise. The linear
approximation based on h(6, 0) and σ = 1 was shown in Figure 1B. The linear approximation
based on h(0,−6) and σ = 1 was shown in Figure 1C. With the exception of the plots in
Figure 1B & C, we view linear kernels as unit vectors. Different arrow lengths were used here
just for display purposes. B. Examples of linear kernels computed at (6, 0) from 500 noise
realizations. Arrows as in panel A. Dashed lines illustrate the lines X = (6, 0) + sh(6, 0)
along which we sampled f to explore behavior in the direction of kernels, as described in
section 4.3.
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based on local sampling of f(x, y), and we obtain a kernel estimate h(4,−5) ≈ (−.5,−.9)
that closely resembles the gradient. On the other hand, the strong noise effectively smooths
f(x, y) by sampling the function over a large region. As a result, the upper right peak in
f(x, y) exerts a large influence, and the resulting kernel estimate h(4,−5) ≈ (.3, .96) points
toward that peak. The linear approximation formed using (5) with either of these kernels
can be considered a legitimate approximation of the function f(x, y) since the magnitude of
the noise determines the length scale of the linear approximation.

4.2 Reduction in variance of estimator

The above estimates of h(x̂) are based on a huge number of realizations (n = 100, 000) so
that variance in the estimate would not play a big role in the computation. In this section,
we consider a smaller number of realizations (n = 500) so that the kernel estimates h(x̂)
would have a larger variance. Our goal is to determine how much our choice of µR in formula
(7) reduced the variance compared to estimates of the kernels with µR replaced with zero.
To understand the practical significance of the variance calculations, note that if a method
reduces the variance by 50%, that means one could reduce the number of realizations by
50% to achieve an estimate with the original variance.

For each of the linear kernels mentioned in section 4.1, we recomputed the kernel with
500 realizations of the noise and calculated the variance in the estimate by repeating this
stimulation 400 times. For comparison, we repeated each calculation after replacing the µR

in (7) by zero. For all the kernel estimates with x̂ 6= (0, 0), we found that using µR reduced
the variance of the estimates by 35%–50% (reduced the standard deviation by 20%–30%)
compared to the kernel estimate with µR replaced with zero. Even when computing the
typical linearization centered around the origin x̂ = (0, 0), using (7) reduced the variance
in the estimate of h(0, 0) by at least 20% (reduced the standard deviation by at least 10%)
compared to the kernel estimate with µR replaced with zero.

We conclude that, at least for this example, we achieved an improved estimate of h(x̂)
by subtracting off µR in (7). The amount of improvement depends on the magnitude of the
average firing rate µR. For example, if we doubled the f(x, y) in (9) so that the average firing
rate µR doubled, the reduction in variance was larger than above values. On the other hand, if
we halved f(x, y), the reduction in variance was smaller than the above values. Nonetheless,
in every example we tested, using µR in (7) reduced the variance in our estimate of h(x̂),
consistent with our analysis.

4.3 Displaying preferred stimulus features

The linear kernel at a point x̂ points in the direction of stimulus space along which the
response of the neuron increases most rapidly. As a result, the function F (X) should increase
as X moves along the line X = x̂ + sh(x̂) for s > 0 as long as X is close enough to x̂ that
F (X) − µR(x̂) is proportional to h(x̂) · (X − x̂). Hence, one way to summarize our linear
approximation is to plot X = x̂ + αh(x̂) for a value of α where F (x̂ + αh(x̂)) is large.

We determine an appropriate value of the parameter α as follows. After calculating
h(x̂) using noise with magnitude σ, we repeatedly present the stimuli xs ≡ x̂ + sh(x̂) for
s = σ, 2σ, . . . , 20σ. We seek α in steps of size σ because σ represents the length scale over
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which F (X) was averaged to determine h(x̂). After presenting each stimulus 100 times, we
estimate F (xs) as the average number of spikes elicited by that stimulus and estimate the
standard error δs as the standard deviation of the mean. We let smax be the value of s that
maximizes F (xs). Then we let α be the smallest value of s where F (xs) ≥ F (xsmax

)−2δsmax
.

In this way, x̂ + αh(x̂) represents a stimulus pointed out by h(x̂) that drives the neuron
strongly.

We demonstrate this procedure with our example two-dimensional function f(x, y) and
the linearization around x̂ = (6, 0). We estimated the kernel h(6, 0) with N = 500 realiza-
tions of σ = 1 and σ = 10 noise. The kernels are shown in figure 2B. The lines X = x̂+sh(x̂)
are also displayed on the graph. The result of sampling the response of the neuron along
each line is shown in figure 3A,C. In both cases, the response of the neuron increases in
the direction of the linear kernel, indicating that the kernel did capture stimulus features to
which the neuron is sensitive. Our choice of α corresponds to the first data point (shown by
a triangle) that is above the line F = F (xsmax

) − 2δsmax
, shown by the gray line.

We summarize these results in figure 3B,D. Each panel displays the vector (x, y) rep-
resented by two rectangles whose shading corresponds to the value of a component of the
vector. The representation captures the meaning of x and y as the luminance of two bars.
More importantly, such a representation can generalize to higher dimensions, unlike the rep-
resentations in figure 2. In figure 3B,D, the first two panels represent the original stimulus
x̂ = (6, 0) and the linear kernel h(x̂) estimated from the analysis, respectively. The third
panel represents the combination of stimulus and linear kernel x̂ + αh(x̂) that drives the
neuron strongly.

For comparison, last panels of figure 3B,D display linear kernels computed at the origin.
As when the kernel was computed at (6, 0), these were also computed with 500 realizations
of the noise for σ = 1, 10. For both values of σ, the second component of the kernel is nearly
zero, corresponding to arrows pointing rightward in figure 2. In contrast, in the combinations
x̂ + αh(x̂), both components are positive and indicate that the neuron responds strongly
when both bars have a high luminance. These combination plots correspond to points in
figure 2B that lie along the lines emanating from the linear kernel directions.

5 Demonstration with a highly selective neuron

For our second example, we demonstrate the results of calculating a linear approximation
of a model neuron that is highly selective to particular stimulus features. The model is a
caricature of the selectivity observed in many nuclei of songbirds, motivated by the obser-
vation that many of these neurons respond selectively to auditory playback of a bird’s own
song (BOS) [14, 5, 16, 13, 15, 9, 18]. BOS neurons respond preferentially to playback of the
BOS compared to songs that are similar, such as the BOS played in reverse or the songs of
other birds of the same species. These neurons can be selective to syllables in the song or
even the temporal order of the syllables within the song.
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Figure 3: Results from calculating the linear approximation around x̂ = (6, 0) using 500
realizations of noise with σ = 1 (panels A and B) and σ = 10 (panels C and D). A. The
firing rate of the neuron increases as we stimulate with x̂ plus a multiple of the linear kernel
h(x̂). Each point is calculated from 100 repetitions of x̂ + sh(x̂). Error bars indicate two
standard errors. Gray line represents firing rate corresponding to the maximum observed
firing rate minus two standard errors. The first point above the gray line is represented
by a triangle and corresponds to the α used in x̂ + αh(x̂) in panel B. B. Pseudocolor
plots of the stimulus and linear kernels. The first plot is x̂ = (6, 0). The second plot is
h(x̂) ≈ (0.3, 0.96), which is also displayed by the short white arrow in figure 2B. The third
plot is the combination x̂ + αh(x̂) ≈ (9, 12) with α = 12. For comparison, the last plot
shows the linear kernel calculated at the origin, h(0, 0) = (0.999,−0.04). In each plot, the
scale (shown at right) was adjusted so that c was the maximum of the absolute value of the
components. C. The firing rate also increased along the direction of the kernel computed
with σ = 10. Plot is identical to panel A. Because the noise was larger in magnitude, we
tested the firing rate at larger steps, increasing the scale of the distance from the original
stimulus x̂ = (6, 0). D. The same pseudocolor plots of the stimulus and linear kernels as in
panel B. In the case where σ = 10, the kernel was h(x̂) ≈ (0.7, 0.7) and the combination
plot was x̂ + αh(x̂) ≈ (21, 14) with α = 20. The linear kernel calculated at the origin was
h(0, 0) ≈ (0.99, 0.14).
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5.1 Description of the model neurons

For our model neuron, the stimulus is a simplified syllable of a “song” containing ten frequen-
cies at each of five time bins. In this way, X contained 50 dimensions, with X i

j representing
the power at frequency j and time bin i, for i = 1, 2, . . . , 5 and j = 1, 2, . . . , 10. For simplic-
ity, we ignored any phase information of the song, and we only included a small number of
times and frequencies.

To implement such selectivity in a simplified model of the form (3), we employed a divisive
normalization model [8, 28]. We modeled the expected number of spikes (in some time bin)
elicited by the stimulus X by the function

F (X) = 0.1 +
g(h1 · X − 10) + 2g(h2 · X − 2)g(2(h1 · X − 10))

0.1 + 100
∑27

j=3 g(hj · X − 10)
(10)

where g(x) = 1/(1 + e−x) is a sigmoidal function. The kernels hj have the same size and
shape as the stimulus X. Although we picture the stimulus X and the kernels hj as matrices
in time and frequency, the dot products hj ·X are defined by regarding them as vectors with
50 components.

Since the model (10) is a function of the 50-dimensional stimulus vector, we cannot plot
F (X) as we did in the previous example. Instead, we describe the model by showing a
representative sample of its 27 different linear kernels in figure 4. Each kernel is zero except
for a small set of elements that are set to the same positive value. The value of the nonzero
elements is determined by the condition that all kernels be normalized to unit vectors.

Projection of the stimulus onto the two kernels h1 and h2 can increase the neuron’s
response. If the projection of X onto the primary kernel h1 is large, the stimulus can elicit
a strong response of the neuron. The primary kernel is shown in the upper left corner of
figure 4. All components of h1 are zero except for a sequence of frequencies that increases
with time. The dot product h1 · X will be large if X contains power in that sequence of
frequencies. In this way, the first term in the numerator of (10) is sensitive to an upward
sweep of frequencies in the song X, reminiscent of frequency modulations observed in birds’
songs.

A large projection onto the secondary kernel h2, in contrast, cannot drive the neuron by
itself. Even if the projection of X onto h2 is large, the stimulus will not elicit a response
from the neuron unless the stimulus simultaneously has a large projection onto the primary
kernel h1. This nonlinear interaction between the two kernels makes the secondary kernel
effectively a “hidden” kernel that is unmasked only under sufficient activation of the primary
kernel. As pictured in the upper right corner of figure 4, the shape of h2 is an upward sweep
of frequencies like h1, but it includes lower frequencies. The optimal stimulus to the neuron
is the simultaneous presence of upward sweeps in both sets of frequencies represented by h1

and h2.
The remaining 25 kernels are divisive kernels. If the stimulus X projects onto those

kernels, it will suppress the response of the neuron. We used four groups of divisive kernels,
samples of which are shown in the bottom row of figure 4. The first group of divisive kernels
contains the four kernels that are sensitive upward sweeps in frequency in the frequencies
ranges between h1 and h2. The second group contains the six kernels that are sensitive to
downward sweeps in frequency. The third group contains the five kernels that are sensitive
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Figure 4: Pseudocolor plots of the kernels of the divisive normalization model (10). The
primary kernel h1 represents an upward sweep of frequencies in the upper frequency band.
The secondary kernel h2 also represents an upward sweep of frequencies, but one that occurs
in the lower frequencies. The bottom row contains representative kernels from the four
groups of divisive kernels. The first group corresponds to upward sweeps (at frequencies
between h1 and h2). The second group corresponds to downward sweeps. The third and
fourth groups correspond to simultaneous presentation of all frequencies at one time and to
presentation of a single constant frequency at all times, respectively.
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to the presence of all frequencies in one time step. The fourth group contains the ten kernels
that are sensitive to a single constant frequency being present in all time steps.

The latter three groups of divisive kernels overlap with the primary and secondary kernels.
The presence in X of power at a single frequency and time will always contribute to the
projection of X along at least two divisive kernels. The divisive kernels activate at the
same rate as the primary kernel and faster than the “unmasking” of secondary kernel by
the primary kernel. Hence, the presence of power at a single frequency and time cannot
significantly increase the firing rate of the neuron.

The model allows only one way to increase the firing rate significantly above the back-
ground firing: the stimulus must include combinations of frequencies that match the primary
kernel h1 and avoid combinations of frequencies that match any one divisive kernel. Once
that condition is satisfied, the firing rate can be increased even further by including combina-
tions of frequencies that match the secondary kernel h2. In this way, model (10) represents
a neuron that is highly selective to these upward sweeps in frequency.

5.2 A sparse noise stimulus

Because the model neuron is highly selective, many combinations of frequencies in the stim-
ulus will suppress the neuron’s response. If we employed a dense noise stimulus, such as the
Gaussian noise of the previous section, the noise will tend to simultaneously activate many
of the kernels. It would be highly unlikely for a realization of such dense noise to selectively
activate just a small number of kernels, as would be needed to increase the response of the
model neuron. If such dense noise were strong enough to significantly modulate the neuron’s
response, it would be highly likely to suppress the response and prevent our analysis from
determining any of the neuron’s response properties.

To increase our chances of obtaining useful information from probing the neuron with
noise, we need a form of noise whose statistics better matched the types of stimuli that would
drive a highly selective neuron. We used a sparse noise that had power at no more than two
frequencies in each time bin. In this way, a single realization of the noise would be relatively
likely to strongly activate a small number of kernels.

We created each realization of the sparse noise Z by randomly selecting two frequencies
at each time bin, and then randomly selecting the noise at those frequencies to be either
positive or negative. Since the stimulus is intended to represent the power of the song at each
frequency, each component of the stimulus must be positive. As described in the appendix, if
the original stimulus x̂ is small, then we adjust the noise to prevent the stimulus x̂+Z from
becoming negative. This adjustment results in a positive value for the mean noise. Because
equation (7) assumes mean zero noise, we subtract the mean value from the noise and add
the mean value to the original stimulus (i.e., we replace Z with Z−E(Z) and replace x̂ with
x̂ + E(Z)). In following examples, we attempt to linearize around stimuli x̂ that contain
many zero components. Because the noise for those components must have a positive mean,
we effectively linearize around stimuli with all positive components.

Because we allow nonzero noise in only two frequencies per time bin, the components
of the noise corresponding to the same time bin are not independent. When the negative
and positive values of the noise were symmetric around zero, these components are still
uncorrelated. However, the process of adjusting the noise to keep x̂ + Z nonnegative breaks
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Figure 5: Results from the standard spike-triggered average of highly selective neuron (10).
A. Linear kernels computed from 10,000 (left) and 200,000 (right) realizations of σ = 3
sparse noise alone. With 10,000 realizations, the kernel shows little structure. With 200,000
realizations, the structure of the primary kernel (figure 4, upper left) is visible. Scale mag-
nitude c chosen as the maximum absolute value of kernel elements. Even though the kernels
were computed with a nonnegative stimulus, negative kernel values are possible because each
component of the original stimulus x̂ is effectively the positive mean value of the noise. B.
Demonstration that the kernel computed from 10,000 noise realization does not capture prop-
erties of the neuron’s response. The average firing rate was estimated by 100 presentations
of the original positive stimulus plus a multiple of the left kernel from panel A. (Negative
values were thresholded to zero.) The firing rate does not change with increasing multiples of
the estimated kernel. Error bars are two standard errors. C. Demonstration that the kernel
computed from 200,000 noise realization does capture properties of the neuron’s response.
Plot is the same as in panel B, except that the right kernel from panel A was used. When
the stimulus was 10–15 times the kernel (plus the original positive stimulus), the neuron
fired significantly higher than with the original stimulus alone.

that symmetry and can introduce correlations among these noise components. We calculate
the covariance matrix CZ in the appendix.

5.3 Results of analysis

5.3.1 Sparse noise alone

We probed the neuron’s response with the sparse noise alone. Because the noise had to be
nonnegative, the mean of the noise was positive. Hence, computing the kernel from (7) is
effectively computing the linear approximation around a vector x̂ whose components are all
positive, equal to the mean of the noise. Nonetheless, computing the kernel in this way is
equivalent to the standard way to employ the spike-triggered average.

For a wide range of noise magnitudes ranging from σ = 0.1 to 100, we generated 10,000
realizations of the noise and computed the linear approximation via (7). The kernel h(x̂)
appeared unstructured (e.g., figure 5A, left). In these cases, the neuron’s firing rate was
nearly identical to the background firing rate of 0.1, so the estimates of the kernels were
created from spikes that were essentially independent of the stimulus. In order to test if
the estimated kernel pointed in a direction of stimulus space that modulated the neuron’s
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response, we sampled the neuron’s response to stimuli in the direction of the kernel. These
stimuli did not lead to an increased firing rate (e.g., figure 5B). We failed to obtain any
indication of the neuron’s stimulus preferences from this linear analysis. The suppressive
effect of the divisive subfields masked any effect of the other subfields.

To test if vast (and experimentally unrealistic) amounts of data could be used to detect
the primary or secondary kernels, we increased the number of noise realization to 200,000. For
σ = 3, we could detect the primary subfield with this linearization centered near the origin
(figure 5A, right). We confirmed that stimuli in the direction of the kernel did modulate
the response of the neuron (figure 5C). However, even with such a large number of noise
realizations, we see no evidence of the secondary kernel. (Even if we further increased the
number of noise realizations to 1,000,000, we still could see no evidence of the secondary
kernel.)

5.3.2 Linearization around a stimulus to which the neuron responds robustly

Suppose we knew the neuron responded to an upper sweep of frequencies as represented by
the primary kernel. This might occur if the upper sweep of frequencies was present in the
bird’s own song, and that the neuron responded robustly to the presentation of that part of
the song. From such experiments, this upper sweep may appear to be the optimal stimulus
for the neuron.

To explore the behavior of the neuron to stimuli similar to this upper sweep, we com-
pute the linear approximation around a stimulus x̂ that is nonzero only in the sequence of
frequencies in the upper sweep (see figure 6B, left). Each nonzero entry has the same value,
x0. We generated 2,000 realizations of the sparse noise Z and added it to x̂. As before, the
zero entries of x̂ effectively become positive due to adding the mean value of the noise.

The results with noise magnitude σ = 1 and original stimulus amplitude x0 = 6 are shown
in figure 6A,B. The linear kernel (figure 6B, second left) clearly shows the upward frequency
sweep in the lower frequency band that is present in the secondary kernel h2 (figure 4, upper
right). By computing our linear approximation around the baseline stimulus x̂, we have
unmasked the influence of the secondary kernel h2 that was invisible when stimulating with
the sparse noise alone. The linear kernel h(x̂) points in the direction of h2 because, starting
at x̂, moving in the h2 direction increases the neuron’s firing rate the most. This example
demonstrates how a suitable application of a linear analysis can reveal nonlinear features in
the response of a neuron.

As with the two dimensional example in section 4.3, we seek to summarize the results
with a combination x̂ + αh(x̂) that maximizes the response of the neuron. Figure 6A shows
the results from sampling the response of the neuron in the direction of h(x̂). We observe
that the firing rate of the neuron along the line xs = x̂ + sh(x̂) saturates around s ∈ (5, 10)
and then decreases for larger s (the decrease is due to suppression of the firing rate by
the divisive kernels). The combination x̂ + αh(x̂) for α = 6 is shown in figure 6B, second
right. This plot summarizes that the neuron responds most strongly to the combination of
frequency upsweeps in both low and high frequency bands.

The linear kernel h(x̂) contains many values that are negative, but the negative values
of h(x̂) are not an indication the they were based on negative values of power at those
frequencies. All components of the effective stimulus become positive when adding the mean
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Figure 6: Calculating the linear kernel around different baseline songs x̂. In each case,
the firing rate increases as multiples of the linear kernel h(x̂) are added to the original
stimulus x̂, indicating that the kernel captured relevant stimulus features (panels A, C, and
E). Pseudocolor plots of original stimulus x̂, linear kernels h(x̂), and combinations x̂+αh(x̂)
are shown in panels B, D, and F. Panel as in figure 3, except that right most plot redisplays
the combination plot x̂ + αh(x̂) with negative values thresholded to zero. A,B. Results
centered around an upward sweep song x̂ of magnitude x0 = 6. The original stimulus
matches the primary kernel (figure 4, top left). The linear kernel captures the secondary
kernel (figure 4, top right). The combination plot is x̂+αh(x̂), with α = 6 determined from
panel A. C,D. Results centered around an upward sweep song x̂ of magnitude x0 = 5. Both
primary and secondary kernels appear in the linear kernel. Even so, the combination plot
(α = 4) is similar to the x0 = 6 case in panel B. E,F. Results centered around a song that
combines the upward sweep of panel B with an upward sweep at intermediate frequencies.
The linear kernel both captures the secondary kernel and indicates the suppressive nature
of the added upward sweep. The combination plot (α = 7) eliminates most of the added
upward sweep.
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value of the noise to x̂. Since most components of the stimulus have only a suppressive effect
on the neuron’s firing probability, the linear kernel points back to the zero values in those
components. However, when calculating values in the direction of the kernel, we stimulate
the neuron with stimulus x̂ + sh(x̂). If s is sufficiently large, this stimulus can take on
negative values. When running the simulations to calculate figure 6A, we threshold each
component of the stimulus X to nonnegative values. For the same reason, the combination
plot (figure 6B, second right) does contain some values that are negative. To reflect the
actual stimulus used, we display x̂ + αh(x̂) for α = 6 with all components thresholded to
nonnegative values in figure 6B, right. Since many components of the combination were
negative, the thresholded picture has a very clean appearance. The thresholding masks the
large variation in the estimated values of the linear kernel.

5.3.3 Reduction of variance

As we did with the two-dimensional example, we investigated how much our choice of µR in
(7) reduced the variance in the estimate of h(x̂). By using the same algorithm to estimate
the variance in the estimators, we discovered that using µR decreased the variance in the
components of h(x̂) by 35% on average (decreased the standard deviation by 20% on average)
compared to estimating the kernel with µR replaced by zero.

5.3.4 Effects of noise magnitude on estimated kernel

We also investigated in how the estimate of the linear kernel varied with noise magnitude σ.
Because of the neuron was highly selective to particular stimulus features, large values of the
noise magnitude would tend to suppress the neuron’s firing; the noise would drive the input
too far from the neuron’s preferred stimuli. If we doubled the noise magnitude to σ = 2, we
still achieved comparable results. However, increasing the noise magnitude to σ = 5 greatly
suppressed the neuron’s firing, and we were unable to detect any structure in the estimated
linear kernel. Dropping σ below 0.5 required additional noise realizations to achieve good
estimates of the linear kernel, as the weaker noise created less modulation in the neuron’s
firing rate.

5.3.5 Effects of choice of stimulus x̂ on estimated kernel

We chose the value of the original stimulus amplitude x0 = 6 because such a stimulus elicited
a strong response from our model neuron. The determination of the linear kernel h(x̂), of
course, depends on the selection of x̂. In section 5.3.1, we demonstrated that choosing x0 = 0
results in a failure to detect response properties of the neuron with reasonable numbers of
noise realizations. Lowering x0 to 5 altered the response to the original stimulus only slightly.
However, the change made a qualitative difference in the form of the estimated linear kernel,
as shown in figure 6C,D. In this case, the estimated linear kernel h(x̂) contained a combi-
nation of the primary and secondary kernels of the model neuron. The kernel demonstrated
that, starting with x0 = 5, the response of the neuron would increase most rapidly if one
simultaneously increased the components of the stimulus corresponding to both upward fre-
quency sweeps. On the other hand, the combination of the linear kernel with the original
song (figure 6D, right two panels) was essentially identical to that of the x0 = 6 case. Both
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linear approximations indicated that the neuron responded most strongly to a combination
of the two frequency sweeps.

Increasing the original song magnitude x0 did not result in qualitative changes to the
estimated linear kernel. This increase did reduce the neuron’s firing rate so that more
noise realizations were required to achieve good estimates of the linear kernel. For example,
we could still recover the secondary kernel starting from x0 = 10 if we presented 6,000
realizations of the noise (not shown).

If the original song x̂ included elements that suppressed the neuron response, the linear
kernel could capture this suppression. To demonstrate, we included in the original song a
frequency upsweep corresponding to the intermediate frequencies of the first divisive kernel
shown in figure 4. We added this upsweep with amplitude 3 to the upsweep of amplitude 6
that corresponded to the primary kernel. Figure 6E,F shows the results from presenting this
stimulus x̂ along with 6,000 realizations of the noise. (Tripling the number of realizations
compensated for the spike rate dropping due to the suppression.) The linear kernel indicates
that the upsweep at intermediate frequencies was indeed suppressive, as the components at
those frequencies are negative. At the same time, the linear kernel captures the fact that
projections of the stimulus onto the secondary do increase the firing rate (figure 6F, second
panel). The combination plots (figure 6F, right two panels) nearly eliminate the upward
sweep corresponding to the divisive kernel and are similar to those from the other linear
approximations.

6 Discussion

6.1 Application to BOS neurons

The preceding analysis was motivated by our desire to understand how the response of
a highly nonlinear neuron is modulated by the stimulus. As one example, we want to
understand a neuron selective to a bird’s own song (BOS) [14, 5, 9, 18]. The nature of the
selectivity of BOS neurons is not well understood, as simple manipulations of the song tend
to suppress the neuron’s firing. Since the bird already gives us the BOS, we begin with a
natural reference point around which to attempt to calculation a linear approximation of the
neuron’s response to song stimuli.

The analysis above provides a mechanism by which one might study the selectivity of
BOS neurons to stimuli that are close to the BOS. Although the neurons are referred to as
BOS neurons because the BOS is the stimulus that appears to drive them most strongly,
there may be modifications of the BOS song that lead to an even more robust response.
One can calculate linear approximations along different portions of the BOS to determine
to which stimulus features the neuron is most sensitive. The calculated linear kernels would
point toward stimulus features that enhance the neuron’s response and away from stimulus
features that suppress the response. The linear approximations may uncover preferred song
features similar to the secondary kernel of section 5.3.2 shown in figure 6. One could obtain
additional information about the nature of the selectivity by calculating linear approximation
centered around songs near the BOS.
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A B C

Figure 7: Schematic illustrations of the advantages of calculating multiple linear approxima-
tions of a neuron’s response to a stimulus. A. Illustration of the benefit of calculating a linear
approximation centered nearby a relevant part of the stimulus space. A highly selective neu-
ron may respond to stimulus in a “selective region” (gray region) of stimulus space that is
small compared to its distance from the origin. Starting from the origin (black circle) yields
only a small range of directions (between dotted lines) that encounter the selective region,
and many intermediate stimuli along those directions do not elicit a response. Starting at a
nearby stimulus (black square) increases the range of directions (between dashed lines) and
decreases the number of intermediate stimuli. B. An easily detected primary region (light
gray) can help one detect an adjacent secondary region (dark gray) that drives a neuron
even more strongly. If the primary region is detectable from the origin (dotted lines), one
can use knowledge of the primary region to calculate a linear approximation centered on
that region (black square). From the new starting point, the secondary region is detectable
(dashed lines). A distant tertiary region (black shape in upper left) that drives the neuron
even more strongly may still be undetectable by this procedure. C. The presence of multiple
selective regions (gray shapes) may cause an initial linear approximation (arrow from black
circle) to point in an average direction that misses all of the regions. Nonetheless, calculating
a linear approximation based at a point (black square) in that direction may detect a region.
Or, if other experiments indicated a point in stimulus space near one of the regions (black
diamond), a linear approximation centered there may point toward that selective region.

6.2 Illustrations of benefits of multiple linear approximations

6.2.1 Highly selective neurons stymie linear approximations at origin

As illustrated by the example of section 5, it is difficult to obtain insight into a highly selec-
tive neuron’s response with a linearization around the origin. (The typical way in which one
employs a spike-triggered average is to compute a linearization around the origin.) When
one samples stimuli symmetrically about the origin (or, for nonnegative stimuli, symmetri-
cally within the positive orthant containing the set of directions containing all nonnegative
components), it is hard to sample a sufficient number of stimuli that drive the cell in order
to obtain a good estimate of a linear kernel (c.f., figure 5).

A simple sketch, shown in figure 7, can illustrate the difficulty of calculating a linear
approximation to the response of highly selective neurons when one must start from the
origin. Imagine that a neuron responded only to a small region of stimulus space (we’ll call
it the “selective region”) and that the selective region was small compared to its distance
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from the origin (figure 7A). In this case, only a small range of directions emanating from the
origin would hit the selective region (in higher dimensions, the angle of suitable directions
would correspond to high-dimensional analog of a cone). If one is searching in all directions,
it will be difficult to locate the selective region. Even if one knew which direction to aim,
precising characterizing the selective region starting at the origin will still be a challenge,
as small differences in direction result in large differences in position around the selective
region.

The problem may be much harder than pinpointing the right direction that points toward
the selective region. For a highly selective cell, most stimuli in the direction of the selective
region may not excite the cell. If the selective region is far from the origin relative to its
size, as illustrated in figure 7A, then both the direction and the distance from the origin
must be precisely specified to hit the selective region. In general, a strategy for sampling the
stimulus space will sample nearby stimuli more frequently than distant stimuli.5 Therefore,
if the sampling length scale does not completely overshoot the selective region, the estimate
of the linear approximation in the direction of the selective region will likely be heavily
influenced by the neuron’s response to stimuli between the selective region and the origin.
If a neuron is highly selective, it many not respond at all to those intermediate stimuli (in
fact, it’s firing could even be suppressed by those stimuli). Without an increased firing rate
occurring in the direction of the selective region, the linear kernel (7) will not pick out that
direction.

6.2.2 Shifted linear approximations can reveal nature of selectivity

The nature of highly selective neurons may be more easily revealed if we allow the use of
shifted linear approximations, i.e., those centered away from the origin. This application of
shifted linear approximations is based on the idea that if we somehow knew to calculate a
linear approximation around a point that was closer to the selective region, then we would
be much more likely to detect the selective region. If we move the original stimulus x̂ from
the point marked by the black circle near the origin to the point marked by the black square
in figure 7A, the selective region both covers a much larger range of directions and becomes
closer. A linear kernel calculated from the point marked by a square is much more likely to
point in the direction of the selective region.

In general, determining a suitable choice for the original stimulus x̂ is not much easier
than finding the selective region itself. If the neuron’s response to stimuli were similar to
that indicated in figure 7A, then one could exploit the ability to move the reference point of
a linear approximation only if one had some other information to guide the choice of starting
point (such as a stimulus that one theorized might be relevant to the type of neuron studied).

On the other hand, if a neuron’s response to stimuli had structure similar to that depicted
in figure 7B, then the practical use of shifted linear approximations is more evident. The light
gray region in figure 7B represents a region of stimulus space that elicits a moderate response
from the neuron. Although the region spans only a small range of angles from the perspective

5Any probability distribution over stimulus space must decay to zero once the distance from the origin is
sufficiently large (otherwise the probability distribution cannot integrate to 1). Therefore, every technique
to sample stimulus space must have some length scale beyond which the sample frequency will decay to zero
with distance from the origin.
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of the origin, the neuron will respond to most stimuli along those directions. Assume that
this region is sufficiently large to be detected either by a linear approximation at the origin or
other techniques. We’ll refer to the light gray region as the “primary” region, as it would be
the region stimulus space that would be primarily be visible to initial experiments probing
the response of the neuron. Adjacent to the primary region is a darker gray region that
we’ll refer to as the “secondary region.” Imagine that stimuli in the secondary region elicit
an even stronger neuronal response than the primary region. Despite this strong response,
the secondary region will be difficult to detect from the origin because the neuron does
not respond to most stimuli along the direction from the origin to the secondary region.
However, the primary region serves as a natural location around which to compute a linear
approximation of the neuron’s response. If one computed a linear approximation centered
at the black square, the secondary region will be both close enough and span a large enough
range of directions to be easily detected. A linear approximation computed at point marked
by the black square will likely point toward the secondary region and reveal that the neuron
actually prefers stimuli that are drawn from that region of stimulus space.

In our divisive normalization model (10), we designed the model to mimic the primary
and secondary region of figure 7B. The primary region corresponded to stimuli that had a
sufficient projection onto the primary kernel without too much projection onto the divisive
kernels. The secondary region corresponded to stimuli that, in addition, had a positive pro-
jection onto the secondary kernel that outweighed any additional projection on the divisive
kernels. Although the linear approximations we calculated from the origin had difficulty
detecting the primary region, one could imagine detecting this region either with noise that
better matches the statistics of the upper sweep “song” or through experiments probing the
response of the neuron to natural “songs”. Since we designed the model to be reminiscent of
properties of BOS neurons, we imagine one detected the primary region through stimulating
the neuron with the BOS that contained syllables in the primary region. With knowledge
of the primary region, we were able to easily detect the secondary region via linearizations
centered in the primary region.

If there happened to be tertiary region of stimulus space that drove the neuron even more
strongly but was distant from the primary and secondary regions (e.g., the black region in
upper left of figure 7B), it would remain invisible from linear approximations centered in
either the primary or secondary regions. Unless a linear approximation in that region is
calculated, the presence of a tertiary region will probably not be detected.

6.2.3 Multiple representations

Shifted linear approximations can capture how a neuron may be selective to different features
depending on the region of stimulus space. For example, imagine that the stimulus space
contains multiple distinct regions of stimuli that strongly drive a neuron, as schematized in
figure 7C. If linear approximations were only calculated at the origin, the combined influence
of these regions may result in the linear kernel indicating an average direction that does
not actually point to any those regions (c.f., the linear kernels calculated at the origin
in figure 2A). A local linear approximation centered around a point nearby one of these
regions would reveal the stimulus direction to which the neuron is most sensitive in that
neighborhood. If one calculated linear kernels at multiple points, the combined result could
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yield a fuller picture of the nature of the neuron’s response to the stimulus.
For this approach to be useful, one would need algorithms to determine around which

additional points one should compute linear approximations. One possibility is that explo-
ration of the neuron’s response to rich stimuli, like the bird songs or other natural stimuli,
may reveal multiple points where the neuron appears to response robustly. For example, a
neuron may respond robustly to different points in a song or movie. One could compute
linear approximations around each of those points to explore what ensemble of stimuli evoke
strong responses from the neuron.

Another possiblity is to use previously calculated linear approximations to guide the
choice for additional stimuli around which to compute linear approximations. For example,
one could compute a second linear approximations along the line determined by the direction
of the initial linear kernel (e.g., at the square in figure 7C). This approach was taken by
Foldiak, who introduced a variant of the gradient ascent algorithm to search for stimuli that
drove neurons in primary visual cortex the most strongly [7]. This algorithm was also used
to search for sound spectra that maximize the firing rate of neurons in the primary auditory
cortex [19].

One could also attempt to use the linear approximation to search for stimuli that max-
imize other functions of the spikes, such as mutual information between the stimulus and
spikes. The key insight is that the linear approximation (5) in combination with the spiking
model (3) can be used to estimate the local behavior of a function of the neuronal output.
One could, for example, calculate in which direction the function increases most rapidly and
explore the response of the neuron to stimuli in that direction. Alternatively, one could also
interpolate among linear approximations based at different points in attempt to approximate
the function over a larger range of stimulus values.

6.3 Comparison to other approaches

We have implemented an approach that computes linear approximations by correlating
neuron’s spike with the stimulus (i.e., reverse correlation or the spike-triggered average)
[3, 17]. This approach has been widely used to probe the “receptive field” of sensory neurons
[6, 10, 25, 23, 11, 30, 24]. Such approaches can be viewed as determining a one-dimensional
subspace specified by the direction of the linear kernel (or filter) to which the neuron is most
responsive [27]. By shifting perspective to looking for an affine subspace (a linear manifold
or a linear subspace offset by a vector), we generalize the use of these methods to neurons
whose global features cannot be captured by a low-dimensional linear subspace. We simply
seek a one-dimensional affine subspace (the line xs = x̂ + sh(x̂)) that captures the response
properties of a neuron in a localized region of stimulus space. By restricting ourselves to a
local view around an original stimulus x̂, we can analyze the response of highly nonlinear
neurons and do need not postulate that the global response of a neuron is well approximated
by the projection of the stimulus onto a one-dimensional subspace.

The idea of using correlation techniques to calculate a perturbation from the response to
given a stimulus was introduced by Kvale and Schreiner [12]. Their work was based on using
an m-sequence as the perturbation. Our work provides a general mathematical framework
for using arbitrary perturbations to probe the nonlinear response properties of neurons.
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The dependence of linear kernel estimates on the stimulus was a central result of The-
unessen et al. [30], where they discovered systematic differences between linear kernels com-
puted from natural versus synthetic stimulus ensembles. Christianson et al. [1] recently
demonstrated how such differences in linear kernels could be caused by higher order statis-
tics of the stimulus interacting with neuronal nonlinearities. This paper, in contrast, focuses
on the effect of changing the mean stimulus by adding a constant stimulus to the noise.

An alternative method to go beyond the one-dimensional subspace spanned by the spike-
triggered average is to employ the spike-triggered covariance [2, 26]. One can determine
higher-dimensional subspaces spanned by significant eigenvectors of the spike-triggered co-
variance matrix, obtaining multiple kernels that capture the principle directions of that
subspace. Since the spike-triggered covariance analysis goes beyond a single linear approxi-
mation, it represents another approach to give insight into the response properties of highly
nonlinear neurons. Drawbacks of the spike-triggered covariance include the fact that it re-
quires much more data than a spike-triggered average and that it will converge to the correct
directions only if the noise is actually Gaussian [20, 27].

Other approaches use higher order statistical measures [20, 29] to estimate subspaces to
which the neuron is most sensitive. One can also combine subspace estimation with models
that relax the Poisson assumption in order capture history-dependent effects like refractory
periods or burstiness [21, 22].

In principle, all of these approaches can be generalized to look for local affine subspaces
centered around an original stimulus x̂. In this way, these analysis methods can be extended
to analyze the response of highly nonlinear neurons, such as those that are highly selective
to particular classes of stimuli. By taking advantage of the local linearity of arbitrary non-
linear differentiable functions, one can develop a set of tools that will reveal simplified local
descriptions of a neuron’s complicated response to a stimulus.

A Appendix

A.1 Calculating the sparse noise

We outline the calculation for determining a sparse noise stimulus that has at most k nonzero
frequencies at each time bin. As each time bin is independent, we can, without loss of
generality, consider a stimulus with only one time bin. Let Nf denotes the number of
frequencies. Then, for j = 1, 2, . . . , Nf , let x̂j denote the jth frequency of the original
stimulus x̂ and let Zj denote the jth frequency of the noise Z. We require that Zj have
standard deviation σ.

If the total stimulus x̂j + Zj could take on negative values, then creating such a noise
is trivial. In a given realization, we randomly select k of the Nf frequencies: Ji, for i =
1, 2, . . . , k. For each of those k frequencies, we let ZJi

equal ±c, each with probability 1/2.
In this way, Zj has mean zero. We select the constant c so that each Zj has standard
deviation σ.

To determine c, note that, out of the
(

Nf

k

)

possible ways to select k frequencies, a partic-

ular j will be included in
(

Nf−1
k−1

)

of those combinations6. Therefore, each Zj will be nonzero

6If we insist that a particular frequency is one of those chosen, then we must choose the remaining k − 1
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with probability
(

Nf−1
k−1

)

(

Nf

k

) =
k

Nf

.

Since Zj will be c with probability k/2Nf and −c with probability k/2Nf , the variance of
Zj is

var Zj = (c)2 k

2Nf

+ (−c)2 k

2Nf

= c2 k

Nf

.

For this variance to equal to σ2, we set c = σ
√

Nf/k.
Since we require that the stimulus be nonnegative, we may need to modify this algorithm.

As long as x̂j ≥ σ
√

Nf/k, then x̂j + Zj ≥ 0 and we can choose the component of the noise
Zj using this algorithm without modification. Otherwise, we need to change the noise to
keep the total stimulus nonnegative. The only change we will make is change the values that
Zj takes on when it is nonzero. In this way, we can change the values of Zj without altering
the distribution of the other Zi for i 6= j.

If Zj is chosen to be nonzero, then we will let Zj = aj with probability 1/2 and let it
be bj with probability 1/2. The default values will be aj = −σ

√

Nf/k and bj = σ
√

Nf/k,

as above. However, if x̂j < σ
√

Nf/k, then we will decrease the absolute value of aj so that
x̂j + aj = 0. After setting aj = −x̂j, we will set the value of bj so that Zj still has standard
deviation σ.

With these choices, the mean of Zj is

E(Zj) = aj

k

2Nf

+ bj

k

2Nf

=
(bj − x̂j)k

2Nf

.

The second moment is

E(Z2
j ) = a2

j

k

2Nf

+ b2
j

k

2Nf

=
(b2

j + x̂2
j)k

2Nf

,

so that the variance is

var Zj = E(Z2
j ) − E(Zj)

2 =
(b2

j + x̂2
j)k

2Nf

−
(bj − x̂j)

2k2

4N2
f

We set this variance equal to σ2. After some algebra, the positive solution bj is

bj =
−x̂j +

√

x̂2
j + 4σ2β(Nf/k)3 − β2(Nf/k)2x̂2

j

βNf/k
, (11)

where β = 2 − k/Nf .
In summary, in each time bin we select k frequencies of the noise to be nonzero. For each

frequency j for which the noise is selected to be nonzero, we set Zj to aj with probability

frequencies from the other Nf − 1 options.
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1/2 and to bj with probability 1/2. If x̂j ≥ σ
√

Nf/k, then we set −aj = bj = σ
√

Nf/k.
Otherwise, we set aj = −x̂j and set bj according to equation (11). In this way, Zj has
standard deviation σ and x̂j + Zj is always nonnegative. Note that if x̂j is zero, then Zj is
nonzero only half of the times that the jth frequency is selected.

Equation (7) assumes that the noise is mean zero. If we adjust the values of the noise so
that aj > −bj, then the noise Zj as described here is not mean zero. Hence, in the calculation
of (7), we subtract the mean from the noise Z and effectively add it to the original stimulus
x̂.

A.2 The covariance matrix of the sparse noise

To calculate the linear kernel, we need to calculate CZ, the covariance matrix of Zj, for (7).
Since we select the noise independently for each time bins, the entries of CZ corresponding
to different time bins will be zero. Hence, it suffices to assume just one time bin as we did
above.

As above, we denote the two nonzero possibilities for Zj as aj and bj. We do not need to
distinguish whether or not they are symmetric about zero. The mean value of Zj is

E(Zj) =
(aj + bj)k

2Nf

.

To calculate the second moment E(ZiZj), we need only need to enumerate the cases where
both Zi and Zj are nonzero for i 6= j. The number of combinations of k frequencies that
include both i and j is7

(

Nf−2
k−2

)

. Therefore, the probability that both Zi and Zj are nonzero
is

(

Nf−2
k−2

)

(

Nf

k

) =
k(k − 1)

Nf (Nf − 1)
.

Each of the four possibilities of nonzero Zi and Zj occur with probability k(k−1)
4Nf (Nf−1)

and the

second moment is

E(ZiZj) =
(aiaj + aibj + biaj + bibj)k(k − 1)

4Nf (Nf − 1)
=

(ai + bi)(aj + bj)k(k − 1)

4Nf (Nf − 1)
.

The covariance is

cov(Zi, Zj) = E(ZiZj) − E(Zi)E(Zj) =
(ai + bi)(aj + bj)k(k − 1)

4Nf (Nf − 1)
−

(ai + bi)(aj + bj)k
2

4N2
f

= −
(ai + bi)(aj + bj)k(Nf − k)

4N2
f (Nf − 1)

.

We see that Zi and Zj are uncorrelated if either ai = −bi or aj = −bj. Even though Zi

and Zj are not independent (as they are from the same time bin), the symmetry about
zero cancels any correlation. On other other, if both x̂i and x̂j are less than σ

√

Nf/k, then
ai + bi > 0 and aj + bj > 0 as a consequence of the algorithm for choosing the a and b. The
symmetry for both variables is broken, and Zi and Zj are negatively correlated.

7If we insist that the two frequencies i and j are chosen, then we must choose the remaining k − 2
frequencies from the other Nf − 2 options.
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