Answer to the first homework problem
I am providing you with the answer to the first homework problem to give you an idea of the level of detail and style of presentation I would like to see from you.

1. Consider a 9-point difference approximation Δ_{h}^{*} to the Laplacian with stencil as shown. Show how to choose the constants α, β, and γ so that the scheme $\Delta_{h}^{*} u_{h}=f$ is consistent to fourth order with the equation $\Delta u=f$.
$\frac{1}{h^{2}}\left(\begin{array}{lllll} & & \alpha & & \\ & & \beta & & \\ \alpha & \beta & \gamma & \beta & \alpha \\ & & \beta & & \\ & & \alpha & & \end{array}\right)$
Answer: Let (x, y) be a grid point and u a smooth function. The difference scheme is

$$
\begin{align*}
\Delta_{h}^{*} u(x, y)= & \frac{1}{h^{2}}\{\alpha[u(x-2 h, y)+u(x+2 h, y)+u(x, y-2 h)+u(x, y+2 h)] \tag{1}\\
& +\beta[u(x-h, y)+u(x+h, y)+u(x, y-h)+u(x, y+h)]+\gamma u(x, y)\}
\end{align*}
$$

We wish to determine values of α, β, and γ so that

$$
\begin{equation*}
\Delta_{h}^{*} u(x, y)=\Delta u(x, y)+O\left(h^{4}\right) \tag{2}
\end{equation*}
$$

By Taylor's theorem we have

$$
u(x+h, y)=u+h \frac{\partial u}{\partial x}+\frac{h^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{h^{3}}{6} \frac{\partial u^{3}}{\partial x^{3}}+\frac{h^{4}}{24} \frac{\partial u^{4}}{\partial x^{4}}+\frac{h^{5}}{120} \frac{\partial u^{5}}{\partial x^{5}}+O\left(h^{6}\right)
$$

where the functions $u, \partial u / \partial x$, etc., on the right hand side are evaluated at (x, y). Replacing h by $-h, 2 h$, and $-2 h$ in this equation, we obtain expansions for $u(x-h, y), u(x+2 h, y)$ and $u(x-2 h, y)$, respectively:

$$
\begin{aligned}
u(x-h, y) & =u-h \frac{\partial u}{\partial x}+\frac{h^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}-\frac{h^{3}}{6} \frac{\partial u^{3}}{\partial x^{3}}+\frac{h^{4}}{24} \frac{\partial u^{4}}{\partial x^{4}}-\frac{h^{5}}{120} \frac{\partial u^{5}}{\partial x^{5}}+O\left(h^{6}\right), \\
u(x+2 h, y) & =u+2 h \frac{\partial u}{\partial x}+\frac{4 h^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}+\frac{8 h^{3}}{6} \frac{\partial u^{3}}{\partial x^{3}}+\frac{16 h^{4}}{24} \frac{\partial u^{4}}{\partial x^{4}}+\frac{32 h^{5}}{120} \frac{\partial u^{5}}{\partial x^{5}}+O\left(h^{6}\right), \\
u(x-2 h, y) & =u-2 h \frac{\partial u}{\partial x}+\frac{4 h^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}-\frac{8 h^{3}}{6} \frac{\partial u^{3}}{\partial x^{3}}+\frac{16 h^{4}}{24} \frac{\partial u^{4}}{\partial x^{4}}-\frac{32 h^{5}}{120} \frac{\partial u^{5}}{\partial x^{5}}+O\left(h^{6}\right) .
\end{aligned}
$$

Combining these expressions we find that

$$
\begin{aligned}
\frac{1}{h^{2}}\{\alpha[u(x-2 h, y)+u(x & \left.+2 h, y)]+\beta[u(x-h, y)+u(x+h, y)]+\frac{\gamma}{2} u(x, y)\right\} \\
& =h^{-2}\left(2 \alpha+2 \beta+\frac{\gamma}{2}\right) u+(8 \alpha+2 \beta) \frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+(32 \alpha+2 \beta) \frac{h^{2}}{24} \frac{\partial^{4} u}{\partial x^{4}}+O\left(h^{4}\right)
\end{aligned}
$$

(Note that the odd-order derivative terms cancel.)
In exactly the same way,

$$
\begin{aligned}
\frac{1}{h^{2}}\{\alpha[u(x, y-2 h)+u(x & \left., y+2 h)]+\beta[u(x, y-h)+u(x, y+h)]+\frac{\gamma}{2} u(x, y)\right\} \\
& =h^{-2}\left(2 \alpha+2 \beta+\frac{\gamma}{2}\right) u+(8 \alpha+2 \beta) \frac{1}{2} \frac{\partial^{2} u}{\partial y^{2}}+(32 \alpha+2 \beta) \frac{h^{2}}{24} \frac{\partial^{4} u}{\partial y^{4}}+O\left(h^{4}\right)
\end{aligned}
$$

Adding these two expressions then gives

$$
\Delta_{h}^{*} u=h^{-2}(4 \alpha+4 \beta+\gamma) u+(8 \alpha+2 \beta) \frac{1}{2} \Delta u+(32 \alpha+2 \beta) \frac{h^{2}}{24}\left(\frac{\partial^{4} u}{\partial x^{4}}+\frac{\partial^{4} u}{\partial y^{4}}\right)+O\left(h^{4}\right)
$$

Therefore (2) holds if and only if

$$
4 \alpha+4 \beta+\gamma=0, \quad 8 \alpha+2 \beta=2, \quad 32 \alpha+2 \beta=0
$$

This linear system has the unique solution $\alpha=-1 / 12, \quad \beta=4 / 3, \quad \gamma=-5$.
Thus the 9 -point stencil which is consistent to fourth order with the Laplacian is

$$
\frac{1}{12 h^{2}}\left(\right)
$$

