
Answer to the first homework problem

I am providing you with the answer to the first homework problem to give you an idea of the
level of detail and style of presentation I would like to see from you.

1. Consider a 9-point difference approximation ∆∗
h to the Laplacian with stencil

as shown. Show how to choose the constants α, β, and γ so that the scheme
∆∗
huh = f is consistent to fourth order with the equation ∆u = f .
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Answer: Let (x, y) be a grid point and u a smooth function. The difference scheme is

(1)
∆∗

hu(x, y) =
1

h2
{α[u(x− 2h, y) + u(x+ 2h, y) + u(x, y − 2h) + u(x, y + 2h)]

+β[u(x− h, y) + u(x+ h, y) + u(x, y − h) + u(x, y + h)] + γu(x, y)}.

We wish to determine values of α, β, and γ so that

(2) ∆∗
hu(x, y) = ∆u(x, y) +O(h4).

By Taylor’s theorem we have
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where the functions u, ∂u/∂x, etc., on the right hand side are evaluated at (x, y). Replacing h by
−h, 2h, and −2h in this equation, we obtain expansions for u(x−h, y), u(x+2h, y) and u(x−2h, y),
respectively:

u(x− h, y) = u − h
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u(x+ 2h, y) = u + 2h
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u(x− 2h, y) = u − 2h
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Combining these expressions we find that
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(Note that the odd-order derivative terms cancel.)
In exactly the same way,
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Adding these two expressions then gives

∆∗
hu = h−2(4α+ 4β + γ)u+ (8α+ 2β)
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Therefore (2) holds if and only if

4α+ 4β + γ = 0, 8α+ 2β = 2, 32α+ 2β = 0.

This linear system has the unique solution α = −1/12, β = 4/3, γ = −5 .

Thus the 9-point stencil which is consistent to fourth order with the Laplacian is
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