1. Consider solving the system $A u=f$ where A is SPD, so the solution minimizes $u^{T} A u / 2-$ $f^{T} u$. Let u_{0} and s_{0} be any vectors (initial iterate and search direction), and define u_{1} by exact line search. Prove that the error $u_{*}-u_{1}$ is A-orthogonal to s_{0}.
2. Suppose that A is a $100 \times 100 \mathrm{SPD}$ matrix but has eigenvalues of high multiplicity, so that there are only 3 distinct eigenvalues altogether. Show that the conjugate gradient method converges in just 3 iterations.
3. Consider the Richardson iteration with parameter ω applied to an SPD matrix A. Recall that it converges for $0<\omega<2 / \lambda_{\max }$ (where $\lambda_{\max }$ is the largest eigenvalue of A). Consider the cases of (a) ω greater than but close to 0 (e.g., $\omega \approx 10^{-6}$); (b) ω less than but close to $2 / \lambda_{\max }$ (e.g., $\omega \approx 1.99 / \lambda_{\max }$); and (c) ω near $1 / \lambda_{\max }$. Investigate in which, if any, of these cases, the Richardson iteration has the smoothing property and so would be a useful smoother for multigrid.
